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Special relativity

1.1 Introduction

In this chapter, we briefly review the basics of special relativity and provide a
short summary of tensor calculus. We assume that the reader is familiar with the
fundamental ideas and concepts of the special theory of relativity (SR). More
complete introductions to special relativity and tensor calculus can be found in,
for example, A First Course in General Relativity by Schutz or Gravitation by
Misner, Thorne, and Wheeler. A good summary is provided in Radiative Processes
in Astrophysics by Rybicki and Lightman.

Practically every mechanical process that we encounter in our daily lives can be
described in terms of Newtonian theory. In astrophysics, however, many systems
are relativistic so that applying Newtonian physics can lead to completely wrong
answers. The Lorentz factor, given by

γ =
√

1

1 − (v/c)2
, (1.1)

where v is the velocity and c the speed of light, quantifies the importance of special
relativistic effects. In a sense, γ measures how close the velocity is to the speed
of light: γ = 1 for v = 0 and γ → ∞ for v → c. As an example, jets that are
emitted from supermassive black holes in the centers of galaxies (see Chapter 8)
have Lorentz factors of up to ∼30, corresponding to 99.94% of the speed of
light. The most violent explosions in the Universe since the Big Bang, gamma-ray
bursts (see Chapter 7) accelerate material to Lorentz factors of several hundreds.
Electrons spiraling around the magnetic field lines of pulsars possess Lorentz fac-
tors of ∼107. The cosmic rays that continuously bombard the Earth’s atmosphere
contain protons with energies of up to ∼1020 eV, which correspond to Lorentz fac-
tors of γ = E/mpc

2 = 1020 eV/938 MeV ≈ 1011. Therefore, neglecting special
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2 1 Special relativity
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Figure 1.1 Coordinate systems used for the Lorentz transformations: the x-axes
are aligned, and the relative velocity between the two frames is v.

relativity in astrophysics can lead to completely wrong interpretations of
observations.

1.2 Lorentz transformations

The special theory of relativity is closely related to the notion of inertial frames.
An inertial frame is a reference frame in which every body is either at rest
or moves with a constant velocity along a straight line. In particular, a body
viewed from an inertial frame accelerates only when a physical force is applied.
In the absence of a net force, a body at rest remains at rest and a body in mo-
tion continues to move uniformly. In SR, the set of time and space coordinates,
(ct, x, y, z),1 labels a space-time event or simply an event. The coordinates of an
event measured in two reference frames, K and K′, that have a constant relative
velocity, v, are related via a Lorentz transformation. Unless otherwise stated, we
assume that the relative velocity is along the x-axis and that the x-axes of both
frames point in the same direction (see Fig. 1.1). In this case, the Lorentz trans-
formation between the coordinates of an event in K labeled with (ct, x, y, z)
and coordinates of the same event in K′ labeled with (ct ′, x ′, y ′, z′) reads as
follows:

t ′ = γ
(
t − vx

c2

)
(1.2)

x ′ = γ (x − vt) (1.3)

1 We use arrows for three-vectors only; lengths of vectors are denoted just by a letter. Components of four-vectors
are labeled by either super- or subscripts. Four-vectors as geometrical objects are framed by brackets.
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1.3 Special relativistic effects 3

y ′ = y (1.4)

z′ = z. (1.5)

Often, the inverse transformation from K′ to K is needed. It can be easily be
obtained by exchanging primed and unprimed quantities and v with −v:

t = γ

(
t ′ + vx ′

c2

)
(1.6)

x = γ (x ′ + vt ′) (1.7)

y = y ′ (1.8)

z = z′. (1.9)

1.3 Special relativistic effects

In this section, we discuss important effects that are direct consequences of the
Lorentz transformations.

1.3.1 Length contraction

Consider a person sitting in frame K′ carrying a rod oriented along the x-axis with
length L0 ≡ x ′

2 − x ′
1. What length would an observer sitting in K measure for the

same rod? Equation (1.3) yields

L0 = x ′
2 − x ′

1 = γ (x2 − x1) = γL, (1.10)

where L = x2 − x1 and the ends of the rod have been measured simultaneously in
each frame (t ′2 = t ′1 and t2 = t1). This means that in its rest frame, the rod appears
to be longer by a factor of γ than in a moving frame, or, seen from the frame that
moves relative to the rod, its length is contracted.

1.3.2 Time dilation

Assume that you have a clock located at the origin of the system K′ and that the
time interval between two ticks of the clock is T0 = t ′2 − t ′1. Then, an observer in
system K measures (see Eq. [1.6])

T = t2 − t1 = γ

(
t ′2 + vx ′

2

c2

)
− γ

(
t ′1 + vx ′

1

c2

)
= γ

(
t ′2 − t ′1

) = γ T0, (1.11)

as x ′
2 = x ′

1 = 0. This means that the time interval appears to be stretched by a
factor of γ with respect to the object’s rest frame.
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4 1 Special relativity

This effect is observable for unstable elementary particles, for example, in
accelerators or cosmic rays. To illustrate this muons produced by cosmic rays in the
Earth’s atmosphere can only be detected on the ground because their lifetimes are
increased by this special relativistic effect. (See Exercise 1 at the end of this chapter.)

1.3.3 Proper time as a Lorentz invariant

Quantities that do not change under a Lorentz transformation are called Lorentz
invariants. An important such quantity is the proper time τ defined via

dτ 2 = dt2 − 1

c2
(dx2 + dy2 + dz2), (1.12)

where (dt, dx, dy, dz) is measured in some arbitrary coordinate system. A clock
carried by an observer at a fixed location (dx = dy = dz = 0) shows dτ 2 = dt2,
therefore the name proper time. By transforming dτ from Eq. (1.12) to a frame
K′ using Eqs. (1.2)–(1.5), we find that dτ ′ = dτ , that is, dτ is indeed a Lorentz
invariant. So how is dτ related to the general time coordinate dt? The relation can
be found by just realising that dτ measures the time increment of a resting clock.
Therefore, time dilation according to Eq. (1.11) yields γ dτ = dt . The same result
can be obtained more formally by

dτ =
√

dt2 − (dx2 + dy2 + dz2)

c2
= dt

√
1 −

(v

c

)2
= γ −1dt. (1.13)

1.3.4 Transformation of velocities

With the Lorentz transformation given by Eqs. (1.2)–(1.5), we can calculate how
velocities transform. If the velocity between our two Lorentz frames is again v

and an object has a velocity of �u = d �x
dt

, where �x = (x, y, z), or �u′ = d �x ′
dt ′ in the

respective frames, the relation, between �u and �u′ can be easily found by means of
Eqs. (1.6)–(1.9):

ux = dx

dt
= γ (dx ′ + vdt ′)

γ (dt ′ + vdx ′/c2)
= dx ′/dt ′ + v

1 + (v/c2)(dx ′/dt ′)
= u′

x + v

1 + vu′
x/c

2
. (1.14)

Completely analogously one finds for the other components:

uy = u′
y

γ (1 + vu′
x/c

2)
and uz = u′

z

γ (1 + vu′
x/c

2)
. (1.15)

In comparison with the x-component, in the last two equations, there is no factor
γ in the nominator to cancel the one in the denominator, which is a result of the
x- and y-components being unaffected by the Lorentz transformation. Of course,
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1.3 Special relativistic effects 5
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Figure 1.2 For the special relativistic transformation of velocities: splitting the
velocity �u into a component parallel (u||) and perpendicular (u⊥) to the velocity
between the two frames, v.

for low velocities where vu′
x 
 c2 and γ ≈ 1, the equations reduce to the usual

Galilean transformation of velocities.
If one splits up the velocity into components parallel and antiparallel to v, u||,

and u⊥, the velocity transformation can be written compactly as

u|| = u′
|| + v

1 + vu′
||

c2

and u⊥ = u′
⊥

γ
(

1 + vu′
||

c2

) . (1.16)

Because these components transform differently, the angles appear to be different
in different frames. Consider a frame K in which an object is moving with velocity
�u (see Fig. 1.2). The angle between �u and the velocity between our two frames, �v,
is given by

tan θ = u⊥
u||

= u′
⊥/γ (1 + vu′

||/c
2)

(u′
|| + v)/(1 + vu′

||/c2)
= u′

⊥
γ (u′

|| + v)
, (1.17)

where we have inserted Eq. (1.16). If the primed velocity components are now
expressed via the angle θ ′ with respect to the �v, u′

|| = u′ cos θ ′, and u′
⊥ = u′ sin θ ′,

we have

tan θ = u′ sin θ ′

γ (u′ cos θ ′ + v)
. (1.18)

This equation describes the relativistic aberration of light.
Aberration is an effect that also occurs at nonrelativistic speeds. Imagine standing

under an umbrella, and rain is falling straight down from the sky. When you start
to walk, you tilt your umbrella slightly forward to protect yourself from the rain,
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6 1 Special relativity

 = 0  = 0.5c = 0.99c

Figure 1.3 Shown are light rays from 12 fixed, distant stars as they appear to a
spaceship. In the leftmost panel, the spaceship is at rest; in the middle it travels
with 0.5c and in the rightmost panel with 0.99c. In the rightmost panel, almost all
photons arrive from the front, even if they stem from stars that are actually behind
the spacecraft (that is why some people refer to this effect as the paranoid effect).

the more so the faster you walk. It seems like the rain is falling from a position in
the sky in front of you, rather than from directly above.

A very similar effect occurs for motion at relativistic speeds. Assume that a
spaceship is at rest with respect to a set of very distant stars and that the stars are
distributed isotropically, so you see the same number of stars per solid angle in
each direction. As the spaceship starts to increase its speed, more and more stars
seem to lie ahead of it; the stars seem to pile up in forward direction. This effect is
illustrated in Fig. 1.3.

1.3.5 Relativistic beaming

This velocity transformation law leads to an interesting effect called relativistic
beaming. Beaming plays an important role in the interpretation of observations
of, say, active galactic nuclei (Chapter 8) or gamma-ray bursts (Chapter 7) (see
Exercise 2) and also in radiation processes such as synchrotron radiation.

It is instructive to consider a photon that moves upward in a frame K′, that is, it
has θ ′ = π/2. If we insert this into Eq. (1.18), we see that in frame K the angle is
given by (u′ = c):

tan θ = u′ sin θ ′

γ (u′ cos θ ′ + v)
= c

γ v
. (1.19)

Therefore, for very large velocities the angle becomes very small, and for ultrarel-
ativistic motion, v ≈ c, we have

θ ≈ tan θ ≈ 1

γ
, (1.20)
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1.3 Special relativistic effects 7

nonrelativistic velocity relativistic velocity

Figure 1.4 Change of a dipole pattern (acceleration perpendicular to the indi-
cated velocity) due to relativistic beaming (left: nonrelativistic, right: relativistic
velocity).

which implies that the photon is beamed in forward direction. For a source that
radiates isotropically in its rest frame, half of the photons (those with angles
|θ ′| ≤ π/2) will be beamed into a cone with an half-opening angle given by the
Lorentz factor, θ ≈ 1/γ . The effect of relativistic beaming on an electron emitting
a typical dipole pattern is shown in Fig. 1.4.

1.3.6 Doppler effect

The Doppler effect describes the change of frequency as measured by an observer
who moves relative to the source. As an example, think of a car that is passing
you: as the car is approaching, you hear a higher frequency. Once it has passed
you, the frequency is lower. In the nonrelativistic case, the frequency at the source
and the observer are related by ωobs = ωsource (1 − v/c)−1, where v is the relative
velocity.

For a rapidly moving object that emits a periodic signal, such as an electromag-
netic wave, we have to apply the special relativistic version of the Doppler effect.
We must account for both the previously discussed time dilation, a purely special
relativistic effect, and the geometric effect that the source has moved between two
pulses.

Assume a source moves at velocity v and emits in its rest frame K′ pulses at a
period T ′ and frequency ωsource = ω′ = 2π/T ′. What is the frequency observed by
an observer in frame K? First, the observer sees the time interval stretched because
of the relativistic time dilation, �t = γ T ′ = γ (2π/ω′). In addition, the source has
moved the distance l from 1 to 2 between two pulses (see Fig. 1.5). The light
emitted at point 2 has to travel a shorter distance than the light coming from point
1. Therefore, the observed period, the time between the two arriving light pulses
as measured by an observer in K, will be �t minus the time it took to travel the
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8 1 Special relativity

1 2

d

to observer

Figure 1.5 A rapidly moving, periodically emitting source travels during one
period from point 1 to 2.

extra distance d = l cos θ = v�t cos θ . The observer will measure

�tobs = �t − d

c
= �t

[
1 −

(v

c

)
cos θ

]
(1.21)

and interpret this as a frequency

ωobs = 2π

�tobs
= 2π

�t [1 − (v/c) cos θ ]

= ωsource

γ [1 − (v/c) cos θ ]
= D · ωsource, (1.22)

where D is called the Doppler factor. This is the relativistic Doppler formula. The
γ in the denominator accounts for the relativistic time dilation; the second term in
the bracket corrects for the light-travel effect that occurs also in the nonrelativistic
case. In nonrelativistic physics, motions perpendicular to the line of sight do not
cause a frequency shift. This is different in the relativistic case. Even for θ = π/2,
a frequency shift occurs: ωobs = ωsource/γ . As we had seen before, the Lorentz
factor occurs because of relativistic time dilation. This purely relativistic effect is
called the transverse Doppler effect.

1.4 Basics of tensor calculus

A tensor is the generalization of the concept of a vector and can be thought of as a
set of numbers, for example, a matrix, with a well-defined behavior under a change
of the coordinate basis.
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1.4 Basics of tensor calculus 9

1.4.1 The metric tensor

An important example of a tensor is the metric tensor. It can be used to measure
distances via a scalar product, which associates a number with two vectors. The
metric tensor essentially determines how to assign the number to the vectors.

Let us start with the well-known scalar product of real-valued, three-dimensional
vectors. Consider two vectors �x = (x1, x2, x3) and �y = (y1, y2, y3) ∈ R

3, where,
as usual, the components are just the projections onto the basis vectors, for example,
�x = (x1, x2, x3) = x1ê1 + x2ê2 + x3ê3. We use the Einstein summation convention
according to which we sum over a repeated upper and lower index, that is, the
expression ajb

j stands for
∑3

j=1 ajb
j . Of course, j is just a dummy index: ajb

j is
exactly the same as aib

i . To avoid conflicts, it is sometimes necessary to rename
dummy indices. For example,

(∑
aix

i
) (∑

biy
i
)

should be written as aix
ibjy

j .
With this rule, the vector �x can be written as

�x = xi êi . (1.23)

The scalar product of the vectors �x and �y is then given as

�x · �y = (xi êi) · (yj êj ) = (êi · êj )xiyj . (1.24)

Note that it is important here to use two different summation indices to distinguish
the two sums. If we know which numbers are assigned to the products of the basis
vectors, êi · êj , we have, via Eq. (1.24), a rule for the scalar products of general
vectors. This is the information contained in the metric tensor. Therefore, one
defines the components of the metric tensor as

gij ≡ êi · êj , (1.25)

and we can now write

�x · �y = gijx
iyj ≡ G(�x, �y). (1.26)

Of course, our Cartesian basis vectors in R
3 are unit vectors, that is, of length unity,

and they are mutually perpendicular to each other. Thus, the metric tensor is in this
case just the unit matrix

g = (gij ) =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ . (1.27)

At this stage, it may seem somewhat cumbersome to write the simple scalar product
in this way, but this allows a very smooth transition to the special relativistic case.

In relativity, four-vectors with one time and three space components play a
prominent role. We have already encountered an important four-vector at the
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10 1 Special relativity

beginning of this chapter, the space-time point (ct, x, y, z), which in tensor calculus
is simply written as (x0, x1, x2, x3).

We follow here the convention that Latin indices refer to the space components
and run from 1 to 3, whereas Greek indices refer to space-time components and run
from 0 to 3. Therefore, ajb

j = ∑3
j=1 ajb

j is different from aµbµ = ∑3
µ=0 aµbµ.

Like in R
3, the components of a four-vector are just its projections onto the basis

vectors:

Xµ = (x0, x1, x2, x3) = x0ê0 + x1ê1 + x2ê2 + x3ê3 = xµêµ. (1.28)

As in the three-dimensional case, the metric tensor can be thought of as a machine
with two input slots that produces a number out of two vectors via a scalar product.
It is symmetric

G(u, v) = G(v, u) (1.29)

and linear

G(u, ξv + ψw) = ξG(u, v) + ψG(u, w), (1.30)

where u, v, w can be either three- or four-vector vectors and ξ, ψ ∈ R. The com-
ponents of the metric tensor are again defined as the scalar products of the basis
vectors:

gµν ≡ G(êµ, êν) = gνµ, (1.31)

where at the last equal sign we have used the symmetry property. With these
conventions, the scalar product of the vectors u and v is given as

G(u, v) = G(uαêα, v
β êβ) = uαvβG(êα, êβ) = uαvβgαβ, (1.32)

where we have made use of Eqs. (1.30) and (1.31). The inverse matrix of gαβ is
denoted gαβ and fulfills

gαλgλβ = δα
β, (1.33)

where δα
β is the Kronecker delta,2 which has the value of 1 for α = β and 0

otherwise. Generally, a tensor T µν is said to be symmetric if T µν = T νµ and
antisymmetric if T µν = −T νµ. It can easily be shown that if a tensor is (anti-)
symmetric in one coordinate system, this is also true in any other coordinate
system.

The special relativistic scalar product is similar to the scalar product of Eq. (1.26).
We have already seen an example of such a special relativistic scalar product (see

2 After the German mathematician Leopold Kronecker (1823–1891).
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