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C H A P T E R

1 Number systems and codes

This chapter deals with the representation of numerical data, with emphasis on
those representations that use only two symbols, 0 and 1. Described are special
methods of representing numerical data that afford protection against various
transmission errors and component failures.

1.1 Number systems

Convenient as the decimal number systemgenerally is, its usefulness inmachine
computation is limited because of the nature of practical electronic devices. In
most present digital machines, the numbers are represented, and the arithmetic
operations performed, in a different number system called the binary number
system. This section is concerned with the representation of numbers in various
systems and with methods of conversion from one system to another.

Number representation

An ordinary decimal number actually represents a polynomial in powers of 10.
For example, the number 123.45 represents the polynomial

123.45 = 1× 102 + 2× 101 + 3× 100 + 4× 10−1 + 5× 10−2.

This method of representing decimal numbers is known as the decimal number
system, and the number 10 is referred to as the base (or radix) of the system.
In a system whose base is b, a positive number N represents the polynomial

N = aq−1bq−1 + · · · + a0b
0 + · · · + a−pb−p

=
q−1∑

i=−p

aib
i,

where the base b is an integer greater than 1 and the a’s are integers in the range
0 ≤ ai ≤ b − 1. The sequence of digits aq−1aq−2 · · · a0 constitutes the integer
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4 Number systems and codes

Table 1.1 Representation of integers

Base

2 4 8 10 12

0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 10 4 4 4
0101 11 5 5 5
0110 12 6 6 6
0111 13 7 7 7
1000 20 10 8 8
1001 21 11 9 9
1010 22 12 10 α

1011 23 13 11 β

1100 30 14 12 10
1101 31 15 13 11
1110 32 16 14 12
1111 33 17 15 13

part of N , while the sequence a−1a−2 · · · a−p constitutes the fractional part of
N . Thus, p and q designate the number of digits in the fractional and integer
parts, respectively. The integer and fractional parts are usually separated by a
radix point. The digit a−p is referred to as the least significant digit while aq−1
is called the most significant digit.
When the base b equals 2, the number representation is referred to as the

binary number system. For example, the binary number 1101.01 represents the
polynomial

1101.01 = 1× 23 + 1× 22 + 0× 21 + 1× 20 + 0× 2−1 + 1× 2−2,

that is,

1101.01 =
3∑

i=−2
ai2

i ,

where a−2 = a0 = a2 = a3 = 1 and a−1 = a1 = 0.
A number N in base b is usually denoted (N )b. Whenever the base is not

specified, base 10 is implicit. Table 1.1 shows the representations of integers 0
through 15 in several number systems.
The complement of a digit a, denoted a′, in base b is defined as

a′ = (b − 1)− a.

That is, the complement a′ is the difference between the largest digit in base
b and digit a. In the binary number system, since b = 2, 0′ = 1 and 1′ = 0.
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5 1.1 Number systems

In the decimal number system, the largest digit is 9. Thus, for example, the
complement1 of 3 is 9− 3 = 6.

Conversion of bases

Suppose that some numberN , which we wish to express in base b2, is presently
expressed in base b1. In converting a number from base b1 to base b2, it is
convenient to distinguish between two cases. In the first case b1 < b2, and
consequently base-b2 arithmetic can be used in the conversion process. The
conversion technique involves expressing number (N )b1 as a polynomial in
powers of b1 and evaluating the polynomial using base-b2 arithmetic.

Example We wish to express the numbers (432.2)8 and (1101.01)2 in base
10. Thus

(432.2)8 = 4× 82 + 3× 81 + 2× 80 + 2× 8−1 = (282.25)10,

(1101.01)2 = 1× 23 + 1× 22 + 0× 21 + 1× 20 + 0

×2−1 + 1× 2−2 = (13.25)10.

In both cases, the arithmetic operations are done in base 10.

When b1 > b2 it ismore convenient to use base-b1 arithmetic. The conversion
procedure will be obtained by considering separately the integer and fractional
parts of N . Let (N )b1 be an integer whose value in base b2 is given by

(N )b1 = aq−1b
q−1
2 + aq−2b

q−2
2 + · · · + a1b

1
2 + a0b

0
2.

To find the values of the a’s, let us divide the above polynomial by b2.

(N )b1
b2

= aq−1b
q−2
2 + aq−2b

q−3
2 + · · · + a1︸ ︷︷ ︸

Q0

+a0

b2
.

Thus, the least significant digit of (N )b2 , i.e., a0, is equal to the first remainder.
The next most significant digit, a1, is obtained by dividing the quotient Q0 by
b2, i.e., (

Q0

b2

)
b1

= aq−1b
q−3
2 + aq−2b

q−4
2 + · · ·︸ ︷︷ ︸

Q1

+a1

b2
.

The remaining a’s are evaluated by repeated divisions of the quotients until
Qq−1 is equal to zero. If N is finite, the process must terminate.

1 In the decimal system, the complement is also referred to as the 9’s complement. In the binary
system, it is also known as the 1’s complement.
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6 Number systems and codes

Example The above conversion procedure is now applied to convert (548)10
to base 8. The ri in the table below denote the remainders. The first entries
in the table are 68 and 4, corresponding, respectively, to the quotient Q0

and the first remainder from the division (548/8)10. The remaining entries
are found by successive division.

Qi ri

68 4 = a0

8 4 = a1

1 0 = a2

1 = a3

Thus, (548)10 = (1044)8. In a similar manner we can obtain the conversion
of (345)10 to (1333)6, as illustrated in the table below.

Qi ri

57 3 = a0

9 3 = a1

1 3 = a2

1 = a3

Indeed, (1333)6 can be reconverted to base 10, i.e.,

(1333)6 = 1× 63 + 3× 62 + 3× 61 + 3× 60 = 345

If (N )b1 is a fraction, a dual procedure is employed. It can be expressed in
base b2 as follows:

(N )b1 = a−1b−1
2 + a−2b−2

2 + · · · + a−pb
−p

2 .

The most significant digit, a−1, can be obtained by multiplying the polynomial
by b2:

b2 · (N )b1 = a−1 + a−2b−1
2 + · · · + a−pb

−p+1
2 .

If the above product is less than 1 then a−1 equals 0; if the product is greater
than or equal to 1 then a−1 is equal to the integer part of the product. The
next most significant digit, a−2, is found by multiplying the fractional part of
the above product part by b2 and determining its integer part; and so on. This
process does not necessarily terminate since it may not be possible to represent
the fraction in base b2 with a finite number of digits.
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7 1.1 Number systems

Example To convert (0.3125)10 to base 8, find the digits as follows:

0.3125× 8 = 2.5000, hence a−1 = 2;

0.5000× 8 = 4.0000, hence a−2 = 4.

Thus (0.3125)10 = (0.24)8.
Similarly, the computation below proves that (0.375)10 = (0.011)2:

0.375× 2 = 0.750, hence a−1 = 0;

0.750× 2 = 1.500, hence a−2 = 1;

0.500× 2 = 1.000, hence a−3 = 1.

Example To convert (432.354)10 to binary, we first convert the integer part
and then the fractional part. For the integer part we have

Qi ri

216 0 = a0

108 0 = a1

54 0 = a2

27 0 = a3

13 1 = a4

6 1 = a5

3 0 = a6

1 1 = a7

1 = a8

Hence (432)10 = (110110000)2. For the fractional part we have

0.354× 2 = 0.708, hence a−1 = 0,

0.708× 2 = 1.416, hence a−2 = 1,

0.416× 2 = 0.832, hence a−3 = 0,

0.832× 2 = 1.664, hence a−4 = 1,

0.664× 2 = 1.328, hence a−5 = 1,

0.328× 2 = 0.656, hence a−6 = 0,

a−7 = 1,

etc.

Consequently (0.354)10 = (0.0101101 · · ·)2. The conversion is usually car-
ried up to the desired accuracy. In our example, reconversion to base 10
shows that

(110110000.0101101)2 = (432.3515)10
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8 Number systems and codes

Table 1.2 Elementary binary operations

Bits
Sum Difference Product

a b a + b Carry a − b Borrow a · b

0 0 0 0 0 0 0
0 1 1 0 1 1 0
1 0 1 0 1 0 0
1 1 0 1 0 0 1

A considerably simpler conversion proceduremay be employed in converting
octal numbers (i.e., numbers in base 8) to binary and vice versa. Since 8 = 23,
each octal digit can be expressed by three binary digits. For example, (6)8
can be expressed as (110)2, etc. The procedure of converting a binary number
into an octal number consists of partitioning the binary number into groups
of three digits, starting from the binary point, and to determine the octal digit
corresponding to each group.

Example

(123.4)8 = (001 010 011.100)2,

(1010110.0101)2 = (001 010 110.010 100) = (126.24)8.

A similar procedure may be employed in conversions from binary to hexa-
decimal (base 16), except that four binary digits are needed to represent a single
hexadecimal digit. In fact, whenever a number is converted from base b1 to base
b2, where b2 = bk

1, k digits of that number when grouped may be represented
by a single digit from base b2.

Binary arithmetic

The binary number system iswidely used in digital systems.Although a detailed
study of digital arithmetic is beyond the scope of this book, we shall present
the elementary techniques of binary arithmetic. The basic arithmetic operations
are summarized in Table 1.2, where the sum and carry, difference and borrow,
and product are computed for every combination of binary digits (abbreviated
bits) 0 and 1. For a more comprehensive discussion of computer arithmetic, the
reader may consult [2].
Binary addition is performed in a manner similar to that of decimal addition.

Corresponding bits are added and if a carry 1 is produced then it is added to
the binary digits at the left.
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9 1.1 Number systems

Example The addition of (15.25)10 and (7.50)10 in binary proceeds as
follows:

1111 carries of 1

1111.01 = (15.25)10
+
0111.10 = ( 7.50)10
10110.11 = (22.75)10

In subtraction, if a borrow of 1 occurs and the next left digit of the minuend
(the number from which a subtraction is being made) is 1 then the latter is
changed to 0 and subtraction is continued in the usual manner. If, however, the
next left digit of the minuend is 0 then it is changed to 1, as is each successive
minuend digit to the left which is equal to 0. The first minuend digit to the left,
which is equal to 1, is changed to 0, and subtraction is continued.

Example The subtraction of (12.50)10 from (18.75)10 in binary proceeds
as follows:

1 borrows of 1

10010.11 = (18.75)10
−
01100.10 = (12.50)10
00110.01 = ( 6.25)10

Just as with decimal numbers, the multiplication of binary numbers is per-
formed by successive addition while division is performed by successive sub-
traction.

Example Multiply the binary numbers below:

11001.1 = (25.5)10
×
110.1 = ( 6.5)10

110011

000000

110011

110011

10100101.11 = (165.75)10
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10 Number systems and codes

Example Divide the binary number 1000100110 by 11001.

10110 quotient

11001
∣∣1000100110
11001

00100101

11001

0011001

11001

00000 remainder

1.2 Binary codes

Although the binary number system has many practical advantages and is
widely used in digital computers, inmany cases it is convenient to workwith the
decimal number system, especially when the communication between human
being andmachine is extensive, sincemost numerical data generated by humans
is in terms of decimal numbers. To simplify the problem of communication
between human andmachine, several codes have been devised inwhich decimal
digits are represented by sequences of binary digits.

Weighted codes

In order to represent the 10 decimal digits 0, 1, . . . , 9, it is necessary to use at
least four binary digits. Since there are 16 combinations of four binary digits,
of which 10 combinations are used, it is possible to form a very large number of
distinct codes. Of particular importance is the class of weighted codes, whose
main characteristic is that each binary digit is assigned a decimal “weight,” and,
for each group of four bits, the sum of the weights of those binary digits whose
value is 1 is equal to the decimal digit which they represent. If w1, w2, w3, and
w4 are the given weights of the binary digits and x1, x2, x3, x4 the corresponding
digit values then the decimal digit N = w4x4 + w3x3 + w2x2 + w1x1 can be
represented by the binary sequence x4x3x2x1. The sequence of binary digits that
represents a decimal digit is called a code word. Thus, the sequence x4x3x2x1

is the code word for N . Three weighted four-digit binary codes are shown in
Table 1.3.
The binary digits in the first code in Table 1.3 are assigned weights 8, 4,

2, 1. As a result of this weight assignment, the code word that corresponds to
each decimal digit is the binary equivalent of that digit; e.g., 5 is represented
by 0101, and so on. This code is known as the binary-coded-decimal (BCD)
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11 1.2 Binary codes

Table 1.3 The code words x4x3x2x1 for the decimal digits N in three weighted
binary codes

w4w3w2w1
Decimal
digit N 8 4 2 1 2 4 2 1 6 4 2 −3
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 1 0 1
2 0 0 1 0 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1 1 0 0 1
4 0 1 0 0 0 1 0 0 0 1 0 0
5 0 1 0 1 1 0 1 1 1 0 1 1
6 0 1 1 0 1 1 0 0 0 1 1 0
7 0 1 1 1 1 1 0 1 1 1 0 1
8 1 0 0 0 1 1 1 0 1 0 1 0
9 1 0 0 1 1 1 1 1 1 1 1 1

code. For each code in Table 1.3, the decimal digit that corresponds to a given
code word is equal to the sum of the weights in those binary positions that
are 1’s rather than 0’s. Thus, in the second code, where the weights are 2, 4,
2, 1, decimal 5 is represented by 1011, corresponding to the sum 2× 1+ 4×
0+ 2× 1+ 1× 1 = 5. The weights assigned to the binary digits may also be
negative, as in the code (6, 4, 2,−3). In this code, decimal 5 is represented by
1011, since 6× 1+ 4× 0+ 2× 1− 3× 1 = 5.
It is apparent that the representations of some decimal numbers in the (2, 4,

2, 1) and (6, 4, 2,−3) codes are not unique. For example, in the (2, 4, 2, 1) code,
decimal 7 may be represented by 1101 as well as 0111. Adopting the represen-
tations shown in Table 1.3 causes the codes to become self-complementing. A
code is said to be self-complementing if the code word of the “9’s complement
of N”, i.e., 9− N , can be obtained from the code word of N by interchanging
all the 1’s and 0’s. For example, in the (6, 4, 2,−3) code, decimal 3 is repre-
sented by 1001 while decimal 6 is represented by 0110. In the (2, 4, 2, 1) code,
decimal 2 is represented by 0010 while decimal 7 is represented by 1101. Note
that the BCD code (8, 4, 2, 1) is not self-complementing. It can be shown that
a necessary condition for a weighted code to be self-complementing is that the
sum of the weights must equal 9. There exist only four positively weighted
self-complementing codes, namely, (2, 4, 2, 1), (3, 3, 2, 1), (4, 3, 1, 1), and (5,
2, 1, 1). In addition, there exist 13 self-complementing codes with positive and
negative weights.

Nonweighted codes

There are many nonweighted binary codes, two of which are shown in Table
1.4. The Excess-3 code is formed by adding 0011 to each BCD code word.
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