Contents

Acknowledgements page xvi

Section I Foundations

1 The big picture

1.1 Importance of ultra-low-power electronics 5
1.2 The power-efficient subthreshold regime of transistor operation 7
1.3 Information, energy, and power 9
1.4 The optimum point for digitization in a mixed-signal system 10
1.5 Examples of biomedical application contexts 14
1.6 Principles for ultra-low-power design 17
1.7 Ultra-low-power information processing in biology 18
1.8 Neuromorphic system example: the RF cochlea 19
1.9 Cytomorphic electronics 22
1.10 Energy sources 23
1.11 An overview of the book’s chapters and organization 24
1.12 Some final notes 26

2 Feedback systems: fundamentals, benefits, and root-locus analysis 28

2.1 Feedback is universal 29
2.2 The basic linear feedback loop 32
2.3 Connections between feedback loops and circuits 35
2.4 The seven benefits of feedback 36
2.5 Root-locus techniques 44
2.6 Eight root-locus rules 46
2.7 Example of a root-locus plot 53
2.8 The zeros of a closed-loop system 55
2.9 Farewell to feedback systems 55

3 MOS device physics: general treatment 57

3.1 Intuitive description of MOS transistor operation 60
3.2 Intuitive model of MOS transistor operation 63
Contents

3.3 Intuitive energy viewpoint for MOS transistor operation 65
3.4 The MOS capacitor (MOSCAP) 68
3.5 Quantitative discussion of the MOSCAP 71
3.6 Determining \((Q_I + Q_{dep})\) in a MOSCAP for a given \(\psi_s\) 73
3.7 Equating the gate charge and bulk charge 76
3.8 Quantitative discussion of the MOSFET 79
3.9 Summary of physical insights 82

4 MOS device physics: practical treatment 84
4.1 The \(\kappa\) approximation 85
4.2 Charge-based current models with the \(\kappa\) approximation 92
4.3 Derivation of current in weak inversion 93
4.4 Derivation of current in strong inversion 95
4.5 Source-referenced model for strong inversion 97
4.6 Moderate inversion 101

5 MOS device physics: small-signal operation 103
5.1 Weak-inversion small-signal models 104
5.2 Strong-inversion small-signal models 108
5.3 Small-signal capacitance models in strong inversion 113
5.4 Extrinsic or parasitic capacitances 120
5.5 Small-signal capacitance models in weak inversion 122
5.6 The transit time 123
5.7 The ‘beta’ of an MOS transistor 125

6 Deep submicron effects in MOS transistors 129
6.1 The dimensionless EKV model 130
6.2 Velocity saturation 133
6.3 Drain induced barrier lowering (DIBL) 140
6.4 Vertical-field effects 143
6.5 Effect on the intuitive model 145
6.6 High-frequency transistor models 146
6.7 Ballistic transport 147
6.8 Transport in nanoscale MOSFETs 149
6.9 Tunneling 151
6.10 Scaling of transistors in the future 152

7 Noise in devices 155
7.1 The mathematics of noise 155
7.2 Noise in subthreshold MOS transistors 161
7.3 Noise in resistors 165
7.4 Unity between thermal noise and shot noise 167
7.5 Noise in above-threshold MOS transistors 168
7.6 Input-referred gate noise 169
7.7 1/f or flicker noise in MOS transistors 170
7.8 Some notes on 1/f noise 173
7.9 Thermal noise in short-channel devices 176
7.10 Thermal noise in moderate inversion 179
7.11 Induced gate noise 181
7.12 Some caveats about noise 182

8 Noise in electrical and non-electrical circuits 184
8.1 Noise in an RC lowpass-filter circuit 185
8.2 A subthreshold photoreceptor circuit 187
8.3 The equipartition theorem 190
8.4 Noise in a subthreshold transconductance amplifier 193
8.5 Noise in general circuits 200
8.6 An ultra-low-noise MEMS capacitance sensor 201

9 Feedback systems 212
9.1 The Nyquist criterion for stability 212
9.2 Nyquist-based criteria for robustness: Gain margin and phase margin 216
9.3 Compensation techniques 219
9.4 The closed-loop two-pole τ-and-Q rules for feedback systems 228
9.5 Conditional stability 229
9.6 Describing-function analysis of nonlinear feedback systems 231
9.7 Positive feedback 232
9.8 Feedback in small-signal circuits 233
9.9 The ‘fake label’ circuit-analysis trick 235
9.10 A circuit example 235

10 Return-ratio analysis 240
10.1 Return ratio for a dependent generator 241
10.2 Return ratio for a passive impedance 243
10.3 Transfer function modification with the return ratio 244
10.4 Robustness analysis with the return ratio 249
10.5 Examples of return-ratio analysis 250
10.6 Blackman’s impedance formula 256
10.7 Driving-point transistor impedances with Blackman’s formula 258
10.8 Middlebrook’s extra-element theorem 261
10.9 Thevenin’s theorem as a special case of return-ratio analysis 264
10.10 Two final examples of return-ratio analysis 265
10.11 Summary of key results 270

Section II Low-power analog and biomedical circuits 273

11 Low-power transimpedance amplifiers and photoreceptors 275
11.1 Transimpedance amplifiers 275
11.2 Phototransduction in silicon 278
11.3 A transimpedance-amplifier-based photoreceptor 283
11.4 Feedback analysis of photoreceptor 286
11.5 Noise analysis of photoreceptor 292
11.6 The adaptation resistor R_A 294
11.7 Experimental measurements of the photoreceptor 296
11.8 Adaptive biasing of I_A for energy efficiency 297
11.9 Zeros in the feedback path 298

12 Low-power transconductance amplifiers and scaling laws for power in analog circuits 301
12.1 A simple ordinary transconductance amplifier (OTA) 302
12.2 A low-power wide-linear-range transconductance amplifier: the big picture 303
12.3 WLR small-signal and linear-range analysis 305
12.4 WLR dc characteristics 310
12.5 Dynamic characteristics of the WLR 317
12.6 Noise analysis 317
12.7 Distortion analysis 322
12.8 Signal-to-noise ratio and power analysis 323
12.9 Scaling laws for power in analog circuits 325
12.10 Low-voltage transconductance amplifiers and low-voltage analog design 326
12.11 Robust operation of subthreshold circuits 329

13 Low-power filters and resonators 330
13.1 G_m−C filter synthesis 331
13.2 Gyrators 333
13.3 Introduction to second-order systems 334
13.4 Synthesis of a second-order G_m−C filter 337
13.5 Analysis of a second-order G_m−C filter 339
13.6 Synthesis and analysis of an alternative G_m−C filter 342
13.7 Higher-order G_m−C filter design 347
13.8 A –s^2-plane geometry for analyzing the frequency response of linear systems 347
14 Low-power current-mode circuits

- **14.1 Voltage versus current**
- **14.2 Static translinear circuits**
- **14.3 Dynamic translinear lowpass filters**
- **14.4 Dynamic translinear integrators and high-order filters**
- **14.5 Biasing of current-mode filters**
- **14.6 Noise, SNR, and dynamic range of log-domain filters**
- **14.7 Log-domain vs. G_m/C_0 filters**
- **14.8 Winner-take-all circuits**
- **14.9 Large-signal operation of the winner-take-all circuit**
- **14.10 Distributed-feedback circuits**

15 Ultra-low-power and neuron-inspired analog-to-digital conversion for biomedical systems

- **15.1 Review of ADC topologies**
- **15.2 A neuron-inspired ADC for biomedical applications**
- **15.3 Computational ADCs and time-to-digital ADCs**
- **15.4 A time-based $\Sigma\Delta$ ADC**
- **15.5 Pipelined ADCs with comparators**
- **15.6 Adiabatic charging and energy-efficient comparators in ADCs**
- **15.7 Digital correction of analog errors**
- **15.8 Neurons and ADCs**

Section III Low-power RF and energy-harvesting circuits for biomedical systems

16 Wireless inductive power links for medical implants

- **16.1 Theory of linear inductive links**
- **16.2 Experimental system design**
- **16.3 Experimental measurements**

17 Energy-harvesting RF antenna power links

- **17.1 Intuitive understanding of Maxwell’s equations**
- **17.2 The non-lossy, one-dimensional transmission line**
- **17.3 The impedance of free space**
- **17.4 Thevenin-equivalent circuit models of antennas**
- **17.5 Near-field coupling**
- **17.6 Far-field coupling: the ‘monopole’ antenna**
- **17.7 Far-field coupling: basics of dipole antennas**
- **17.8 Directional radiation and antenna gain**
- **17.9 Derivation of far-field transfer impedance or Z_{12}**
- **17.10 Impedance matching: the Bode-Fano criterion**
- **17.11 Making the antenna and the load part of the matching network**
17.12 Rectifier basics 477
17.13 Rectifier analysis and optimization 481
17.14 Output voltage ripple in rectifiers 482
17.15 Latchup in CMOS rectifiers 483
17.16 Rectifier modeling 483
17.17 Experimental measurements 486
17.18 Summary 488

18 Low-power RF telemetry in biomedical implants 489
18.1 Impedance modulation in coupled parallel resonators 493
18.2 Impedance-modulation transceiver 495
18.3 Pulse-width modulation receiver 503
18.4 Dynamic effects in impedance modulation 505
18.5 Experimental results for a complete transceiver 508
18.6 Energy efficiency of the uplink and downlink 511
18.7 Scaling laws for power consumption in impedance-modulation links 511
18.8 The energy per bit in impedance-modulation links 518
18.9 Incoherent versus coherent RF receivers 522
18.10 Radiated emissions and FCC regulations 523
18.11 Seven considerations in choosing a carrier frequency 524
18.12 RF antenna links for implants 525
18.13 The skin depth of biological tissue 525

Section IV Biomedical electronic systems 529

19 Ultra-low-power implantable medical electronics 531
19.1 Cochlear implants or bionic ears 534
19.2 An ultra-low-power programmable analog bionic ear processor 537
19.3 Low-power electrode stimulation 558
19.4 Highly miniature electrode-stimulation circuits 562
19.5 Brain-machine interfaces for the blind 565
19.6 Brain-machine interfaces for paralysis, speech, and other disorders 572
19.7 Summary 575

20 Ultra-low-power noninvasive medical electronics 579
20.1 Analog integrated-circuit switched-capacitor model of the heart 581
20.2 The electrocardiogram 585
20.3 A micropower electrocardiogram amplifier 590
20.4 Low-power pulse oximetry 595
20.5 Battery-free tags for body sensor networks 601
Section V Principles for ultra-low-power analog and digital design

21 Principles for ultra-low-power digital design

21.1 Subthreshold CMOS-inverter basics
21.2 Sizing and topologies for robust subthreshold operation
21.3 Types of power dissipation in digital circuits
21.4 Energy efficiency in digital systems
21.5 Optimization of energy efficiency in the subthreshold regime
21.6 Optimization of energy efficiency in all regimes of operation
21.7 Varying the power-supply voltage and threshold voltage
21.8 Gated clocks
21.9 Basics of adiabatic computing
21.10 Adiabatic clocks
21.11 Architectures and algorithms for improving energy efficiency

22 Principles for ultra-low-power analog and mixed-signal design

22.1 Power consumption in analog and digital systems
22.2 The low-power hand
22.3 The optimum point for digitization in a mixed-signal system
22.4 Common themes in low-power analog and digital design
22.5 The Shannon limit for energy efficiency
22.6 Collective analog or hybrid computation
22.7 HSMs: general-purpose mixed-signal systems with feedback
22.8 General principles for low-power mixed-signal system design
22.9 The evolution of low-power design
22.10 Sensors and actuators

Section VI Bio-inspired systems

23 Neuromorphic electronics

23.1 Transmission-line theory
23.2 The cochlea: biology, motivations, theory, and RF-cochlea design
23.3 Integrated-circuit unidirectional and bidirectional RF cochleas
23.4 Audio cochleas and bio-inspired noise-robust spectral analysis
23.5 A bio-inspired analog vocal tract
23.6 Bio-inspired vision architectures
23.7 Hybrid analog-digital computation in the brain
23.8 Spike-based hybrid computers
23.9 Collective analog or hybrid systems
23.10 Energy efficiency in neurobiological systems 743
23.11 Other work 747
23.12 Appendix: Power and computation in the brain, eye, ear, and body 747

24 Cytomorphic electronics: cell-inspired electronics for systems and synthetic biology 753
24.1 Electronic analogies of chemical reactions 755
24.2 Log-domain current-mode models of chemical reactions and protein-protein networks 759
24.3 Analog circuit models of gene-protein dynamics 766
24.4 Logic-like operations in gene-protein circuits 769
24.5 Stochastics in DNA-protein circuits 772
24.6 An example of a simple DNA-protein circuit 774
24.7 Circuits-and-feedback techniques for systems and synthetic biology 776
24.8 Hybrid analog-digital computation in cells and neurons 783

Section VII Energy sources 787
25 Batteries and electrochemistry 789
25.1 Basic operation of a battery 789
25.2 Example mechanism for battery operation 791
25.3 Chemical reaction kinetics and electrode current 793
25.4 Mass-transport limitations 796
25.5 Large-signal equivalent circuit of a battery 799
25.6 Battery voltage degradation with decreasing state of charge 802
25.7 Small-signal equivalent circuit of a battery and of electrodes 806
25.8 Operation of a lithium-ion battery 812
25.9 Operation of a zinc-air battery 815
25.10 Basic operation of fuel cells 816
25.11 Energy density, power density, and system cost 817

26 Energy harvesting and the future of energy 822
26.1 Sources of energy 824
26.2 Electrical circuit models of mechanical systems 825
26.3 Energy harvesting of body motion 827
26.4 Energy harvesting of body heat 831
26.5 Power consumption of the world 835
26.6 A circuit model for car power consumption 836
26.7 Electric cars versus gasoline cars 841
26.8 Cars versus animals 844
26.9 Principles of low-power design in transportation 846
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.10 Solar electricity generation</td>
<td>848</td>
</tr>
<tr>
<td>26.11 Biofuels</td>
<td>854</td>
</tr>
<tr>
<td>26.12 Energy use and energy generation</td>
<td>855</td>
</tr>
</tbody>
</table>

Epilogue
Bibliography
Index

859
860
879