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SYMMETRIC GENERATION OF GROUPS

Some of the most beautiful mathematical objects found in the last forty
years are the sporadic simple groups, but gaining familiarity with these
groups presents problems for two reasons. Firstly, they were discovered
in many different ways, so to understand their constructions in depth one
needs to study lots of different techniques. Secondly, since each of them
is, in a sense, recording some exceptional symmetry in space of certain
dimensions, they are by their nature highly complicated objects with a rich
underlying combinatorial structure.

Motivated by initial results on the Mathieu groups which showed that these
groups can be generated by highly symmetrical sets of elements, the author
develops the notion of symmetric generation from scratch and exploits this
technique by applying it to many of the sporadic simple groups, including
the Janko groups and the Higman–Sims group.
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Preface

The book is aimed at postgraduate students and researchers into finite
groups, although most of the material covered will be comprehensible to
fourth year undergraduates who have taken two modules of group theory.
It is based on the author’s technique of symmetric generation, which seems
able to present many difficult group-theoretic constructions in a more ele-
mentary manner. It is thus the aim of the book to make these beautiful,
but combinatorially complicated, objects accessible to a wider audience.

The stimulus for the investigations which led to the contents of the book
was a question from a colleague of mine, Tony Gardiner, who asked me if
the Mathieu group M24 could contain two copies of the linear group L3�2�
which intersect in a subgroup isomorphic to the symmetric group S4. He
needed such a configuration in order to construct a graph with certain
desirable properties. I assured him that the answer was almost certainly
yes, but that I would work out the details. I decided to use copies of L3�2�
which are maximal in M24 and found that the required intersection occurred
in the nicest possible way, in that one could find subgroups H �K � L3�2�,
with H ∩K � S4, and an involution t such that CM24

�H ∩K� = �t� and
H t = K. This means that t has seven images under conjugation by H , and
the maximality of H together with the simplicity of M24 mean that these
seven involutions must generate M24. The symmetry of the whole set-up
enables one to write down seven corresponding involutory permutations on
24 letters directly from a consideration of the action of L3�2� on 24 points.

Applying the same ideas with L3�2� replaced by the alternating group
A5, or more revealingly the projective special linear group PSL2�7� replaced
by PSL2�5�, I found that in an analogous manner the smaller Mathieu group
M12 is generated by five elements of order 3 which can be permuted under
conjugation within the large group by a subgroup isomorphic to A5.

From here the generalization to other groups became clear and many
of the sporadic simple groups revealed themselves in a pleasing manner.
This book concentrates on groups of moderate size, and it is satisfying to
see how the symmetry of the generating sets enables one to verify by hand
claims that would appear to be beyond one’s scope. With groups such as the
smallest Janko group J1, the Higman–Sims group HS and the second Janko
group HJ, I have included the full manual verification, so that the reader
can appreciate what can be achieved. However, in writing the book I have

ix
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x Preface

come more and more to make use of the double coset enumerator which
was produced by John Bray and myself specifically for groups defined by
what we now call a symmetric presentation. The program implementing
this algorithm is written in Magma, which has the advantage that it is
very easy to read what the code is asking the machine to do. Thus, even
when a hand calculation is possible, and indeed has been completed, I have
often preferred to spare the reader the gory details and simply include the
Magma output. Of course, some of the groups which are dealt with in this
manner are out of range for all but the doughtiest reckoner!

As is made clear in the text, every finite simple group possesses definitions
of the type used in this book. However, I have not seen fit to include those
groups which are plainly out of range of mechanical enumeration, or where
a description of the construction introduces additional complicated ideas.
Nonetheless, 19 of the 26 sporadic groups are mentioned explicitly and it is
hoped that the definitions given are quite easily understood. The book is in
three Parts.

Part I: Motivation

Part I, which assumes a rather stronger background than Part II and which
could, and perhaps should, be omitted at a first reading, explains where the
ideas behind symmetric generation of groups came from. In particular, it
explains how generators for the famous Mathieu groups M12 and M24 can
be obtained from easily described permutations of the faces of the dodec-
ahedron and Klein map, respectively. This not only ties the approach in
with classical mathematics, but demonstrates a hitherto unrecognized link
with early algebraic geometry. Although Part I is, in a sense, independent
of what follows, the way in which combinatorial, algebraic and geometric
constructions complement one another gives an accurate flavour of the rest
of the book.

Part I is essentially background and does not contain exercises.

Part II: Involutory symmetric generators

Part II begins by developing the basic ideas of symmetric generation of finite
groups in the most straightforward case: when the generators have order 2.
The preliminary topics of free products of cyclic groups and double cosets are
defined before the notions of symmetric generating sets, control subgroup,

progenitor, Cayley diagrams and coset stabilizing subgroups are introduced
and fully explained through elementary but important examples. It is shown
that every finite simple group can be obtained in the manner described, as
a quotient of a progenitor. Through these elementary examples the reader
becomes adept at handling groups defined in terms of highly symmetric
sets of elements of order 2.

At this stage we demonstrate how the algebraic structure can be used to
do the combinatorial work for us. The Fano plane emerges as a by-product
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of the method, and the famous isomorphisms A5 � PSL2�5� and PSL2�7��
PSL3�2� are proved. Further, PSL2�11� emerges in its exceptional Galois
action on 11 points, and the 11-point biplane is revealed. An easy example
produces the symmetric group S6 acting non-permutation identically on
two sets of six letters, and the outer automorphism of S6 reveals itself more
readily than in other constructions known to the author; the isomorphism
AutA6 �P�L2�9� follows. The method is also used to exhibit the exceptional
triple covers of A6 and A7.

There follows a systematic computerized investigation of groups gener-
ated by small, highly symmetrical sets of involutory generators, and it is
seen that classical and sporadic groups emerge alongside one another. The
results of this investigation are presented in convenient tabular form, as in
Curtis, Hammas and Bray [36].

Having familiarized the reader with the methods of symmetric gener-
ation, we now move on to more dramatic applications. Several sporadic
simple groups are defined, and in many cases constructed by hand, in terms
of generating sets of elements of order 2.

Part II concludes by describing how the methods of symmetric generation
afford a concise and amenable way of representing an element of a group as
a permutation followed by a short word in the symmetric generators. Thus
an element of the smallest Janko group J1 can be written as a permutation
of eleven letters, in fact an element of L2�11�, followed by a word of length
at most four in the eleven involutory symmetric generators. A manual
algorithm for multiplying elements represented in this manner, and for
reducing them to canonical form, has been computerized in Curtis and
Hasan [37].

Part III: Symmetric generators of higher order

In Part III we extend our investigations to symmetric generators of order
greater than 2. It soon becomes apparent that this leads us into a consid-
eration of monomial representations of our so-called control subgroup over
finite fields. The resulting progenitors are slightly more subtle objects than
those in Part II, and they reward our efforts by producing a fresh crop of
sporadic simple groups.

Nor is it necessary to restrict our attention to finite fields of prime
order. A monomial representation over, say, the field of order 4 may be
used to define a progenitor in which each ‘symmetric generator’ is a Klein
fourgroup. It turns out that this is a natural way to obtain the Conway
group Co1 and other sporadic groups.

The classification of finite simple groups is one of the most extraordinary
intellectual achievements in the twentieth century. It states that there are
just 26 finite simple groups which do not fit into one of the known infinite
families. These groups, which range in size from the smallest Mathieu group
of order 7920 to the Monster group of order around 1053, were discovered
in a number of unrelated ways and no systematic way of constructing
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xii Preface

them has as yet been discovered. Symmetric generation provides a uniform
concise definition which can be used to construct surprisingly large groups
in a revealing manner. Many of the smaller sporadic groups are constructed
by hand in Parts II and III of this book, and computerized methods for
constructing several of the larger sporadics are described. It is our aim in
the next few years to complete the task of providing an analogous definition
and construction of each of the sporadic finite simple groups.
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