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Introduction to invariant and

equivariant problems

The curve completion problem

Consider the ‘curve completion problem’, which is a subproblem of the much

more complex ‘inpainting problem’. Suppose we are given a partially obscured

curve in the plane, as in Figure 0.1, and we wish to fill in the parts of the curve

that are missing. If the missing bit is small, then a straight line edge can be a

cost effective solution, but this does not always give an aesthetically convincing

look. Considering possible solutions to the curve completion problem (Figure

0.2), we arrive at three requirements on the resulting curve:

� it should be sufficiently smooth to fool the human eye,
� if we rotate and translate the obscured curve and then fill it in, the result

should be the same as filling it in and then rotating and translating,
� it should be the ‘simplest possible’ in some sense.

The first requirement means that we have boundary conditions to satisfy as well

as a function space in which we are working. The second means the formulation

of the problem needs to be ‘equivariant’ with respect to the standard action

of the Euclidean group in the plane, as in Figure 0.3. This condition arises

naturally: for example, if the image being repaired is a dirty photocopy, the

result should not depend on the angle at which the original is fed into the

photocopier.

All three conditions can be satisfied if we require the resulting curve

to be such as to minimise an integral which is invariant under the group

action,
∫

L(s, κ, κs, . . . ) ds, (0.1)
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2 Introduction

Figure 0.1 A curve in the plane with occlusions.

?

Figure 0.2 Which infilling is best?

completecomplete

rotate

rotate

Figure 0.3 The solution is equivariant.

where s is arc length and κ the Euclidean curvature,

κ =
uxx

(1 + u2
x)3/2

,
d

ds
=

1√
1 + u2

x

d

dx
(0.2)

and ds =

√
1 + u2

x dx.

The theory of the Calculus of Variations is about finding curves that minimise

integrals such as equation (0.1), and the most famous Lagrangian in this family

is

L[u] =

∫
κ2 ds. (0.3)
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The curve completion problem 3

The main theorem in the Calculus of Variations is that the minimising curves

satisfy a differential equation called the Euler–Lagrange equation. There are

quite a few papers and even textbooks that either ‘prove’ or assume the wrong

Euler–Lagrange equation for (0.3), namely that the minimising curve is a circle,

that is, satisfying κ = c. The correct result, calculated by Euler himself, is that

the curvature of the minimising curve satisfies

κss +
1

2
κ3 = 0, (0.4)

which is solved by an elliptic function. Solutions are called ‘Euler’s elastica’

and have many applications. See Chan et al. (2002) for a discussion relevant to

the inpainting problem.

While Euler–Lagrange equations can be found routinely by symbolic com-

putation packages, and then rewritten in terms of historically known invariants,

this process reveals little to nothing of why the Euler–Lagrange equation has

the terms and features it does. The motivating force behind Chapter 7 was to

bring out and understand the structure of Euler–Lagrange equations for vari-

ational problems where the integrand, called a Lagrangian, is invariant under

a group; the groups relevant here are not finite groups, but Lie groups, those

that can be parametrised by real or complex numbers, such as translations and

rotations.

One of the most profound theorems of the Calculus of Variations is Noether’s

Theorem, giving formulae for first integrals of Euler–Lagrange equations for

Lie group invariant Lagrangians. Most Lagrangians arising in physics have such

an invariance; the laws of nature typically remain the same under translations

and rotations, also pseudorotations in relativistic calculations, and so on, and

thus Noether’s Theorem is well known and much used.

If one calculates Noether’s first integrals for the variational problem (0.3),

the result can be written in the form,

⎛
⎝

c1

c2

c3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 + u2

x

−
ux√

1 + u2
x

0

ux√
1 + u2

x

1√
1 + u2

x

0

xux − u√
1 + u2

x

uux + x√
1 + u2

x

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

−κ2

−2κs

2κ

⎞
⎠ (0.5)

where the ci are the constants of integration. The first component comes from

translation in x, the second from translation in u and the third from rotation in

the (x, u) plane about the origin. The 3 × 3 matrix appearing in (0.5), which

I denote here by B(x, u, ux), has a remarkable property. If one calculates the

www.cambridge.org/9780521857017
www.cambridge.org


Cambridge University Press
978-0-521-85701-7 — A Practical Guide to the Invariant Calculus
Elizabeth Louise Mansfield
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

induced action of the group of rotations and translations in the plane, that is,

the special Euclidean group SE(2), on B, componentwise, then one has

B(g · x, g · u, g · ux) = R(g)B(x, u, ux), for all g ∈ SE(2)

where R(g) is a particular matrix representation of SE(2) called the Adjoint

representation. In other words, B(x, u, ux) is equivariant with respect to the

group action, and is thus an equivariant map from the space with coordi-

nates (x, u, ux, uxx, . . . ) to SE(2). The equivariance can be used to under-

stand how the group action takes solutions of the Euler–Lagrange equations to

solutions.

Equivariant maps are, in fact, the secret to success for the invariant calculus.

They are denoted as a ‘moving frame’ and are the central theme of Chapter 4. In

Chapter 7 we prove results that give the structure of both the Euler–Lagrange

equations and the set of first integrals for invariant Lagrangians, using the

symbolic invariant calculus developed in Chapters 4 and 5. The fact that

the formula for Noether’s Theorem yields the very map required to establish

the symbolic invariant calculus, used in turn to understand the structure of the

results, continues to amaze me.

Curvature flows and the Korteweg–de Vries equation

Consider the group of 2 × 2 real matrices with determinant 1, called SL(2),

which we write as

SL(2) =

{(
a b

c d

)
| ad − bc = 1

}
.

We are interested in actions of this group on, say, curves in the (x, u) plane,

that evolve in time, so our curves are parametrised as (x, t, u(x, t)). Suppose

for g ∈ SL(2) we impose that the group acts on curves via the map

g · x = x, g · t = t, g · u =
au + b

cu + d
.

Using the chain rule, we can induce an action on ux and higher derivatives, as

g · ux =
∂(g · u)

∂(g · x)
=

ux

(cu + d)2
,

and

g · uxx =
∂(g · ux)

∂(g · x)
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The essential simplicity of the main idea 5

and so on. It is then a well-established historical fact that the lowest order

invariants are

W =
ut

ux

, V =
uxxx

ux

−
3

2

u2
xx

u2
x

:= {u; x}.

The invariant V is called the Schwarzian derivative of u and is often denoted

as {u; x}. This derivative featured strongly in the differential geometry of a

bygone era; it is used today in the study of integrable systems. The reason is

as follows. The invariants V and W are functionally independent, but there is

a differential identity or syzygy,

∂

∂t
V =

(
∂3

∂x3
+ 2V

∂

∂x
+ Vx

)

︸ ︷︷ ︸
H

W.

The operator H appearing in this equation is one of the two Hamiltonian

operators for the Korteweg–de Vries equation, see Olver (1993), Example 7.6,

with V = u/3. Thus, if W = V , that is if ut = ux{u; x}, then V (x, t) satisfies

the Korteweg–de Vries equation.

In fact there are many examples like this, where syzygies between invariants

give rise to pairs of partial differential equations that are integrable, with one

of the pair being in terms of the invariants of a given smooth group action.

Another example of such a pair is the vortex filament equation and the non-

linear Schrödinger equation. In that case, the group action is the standard action

of the group of rotations and translations in R
3. We refer to Mansfield and van

der Kamp (2006) and to Marı́ Beffa (2004, 2007, 2008a, 2008b) for more

information.

The essential simplicity of the main idea

For many applications, what seems to be wanted is the following:

given the smooth group action, derive the invariants and their syzygies

algorithmically, that is, without prior knowledge of 100 years of differential

geometry, and with minimal effort.

To show the essential simplicity of the main idea, we consider a simple set

of transformations of curves (x, u(x)) in the plane given by

x �→ x̃ = λx + k, u �→ ũ = λu, λ �= 0. (0.6)
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6 Introduction

The induced action on tangent lines to the curves is given by the chain rule:

ux �→
dũ

dx̃
=

dũ

dx

(
dx̃

dx

)−1

=
λux

λ
= ux

and so ux is an invariant. Continuing, we obtain

uxx �→
uxx

λ
, uxxx �→

uxxx

λ2

and so on. Of course, in this simple example, we can see what the invariants

have to be. But let us pretend we do not for some reason, and derive a set of

invariants.

The basic idea is to solve two equations for the two parameters λ and k. If

we take x̃ = 0 and ũ = 1, we obtain

λ =
1

u
, k = −

x

u
. (0.7)

We give these particular values of the parameters the grand title ‘the frame’. If

we now evaluate the images of uxx , uxxx , . . . under the mapping, with λ and k

given by the frame parameters in equation (0.7), we obtain

uxx �→
uxx

λ
�→ uuxx, uxxx �→

uxxx

λ2
�→ u2uxxx, . . . .

We now observe that the final images of our maps are all invariants. Indeed,

u2uxxx �→ (λu)2
(uxxx

λ2

)
= u2uxxx

and so on. The method of ‘solve for the frame, then back-substitute’ has

produced an invariant of every order, specifically

In = un−1uxx . . . x︸ ︷︷ ︸
n terms

.

It is easy to show that any invariant can be expressed in terms of the In. Indeed,

if F (x, u, ux, . . . ) is an invariant, then

F (x, u, ux, uxx, . . . ) = F
(
λx + k, λu, ux,

uxx

λ
, . . .

)
(0.8)

for all λ and k. If I use the ‘frame’ values of the parameters in equation (0.8), I

obtain

F (x, u, ux, uxx, . . . ) = F (0, 1, ux, uuxx, . . . ) = F (0, 1, I1, I2, . . . ).

Since any invariant at all can be written in terms of the In, we have what is

called a generating set of invariants.
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The essential simplicity of the main idea 7

But that is not all. If I use the same approach on the derivative operator

d

dx
�→

d

dx̃
=

(
dx̃

dx

)−1
d

dx
= λ

d

dx
�→ u

d

dx

then the final result,

D = u
d

dx

is invariant, that is,

D �→ ũ
d

dx̃
= u

d

dx
= D.

Differentiating an invariant with respect to an invariant differential operator

must yield an invariant, and indeed we obtain

DI1 = I2, DI2 = I3 + I1I2 (0.9)

and so on.

Equations of the form (0.9) are called symbolic differentiation formulae.

The major advance made by Fels and Olver (Fels and Olver, 1998, 1999) was

to find a way to obtain equations (0.9) without knowing the frame, but only the

equations used to define the frame, which in this case were x̃ = 0, ũ = 1.

If we now look at a matrix form of our mapping,

⎛
⎝

x̃

ũ

1

⎞
⎠ =

⎛
⎝

λ 0 k

0 λ 0

0 0 1

⎞
⎠

⎛
⎝

x

u

1

⎞
⎠

and evaluate the matrix of parameters on the frame, we obtain ‘the matrix form

of the frame’,

̺(x, u) =

⎛
⎜⎜⎜⎜⎜⎝

1

u
0 −

x

u

0
1

u
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.
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8 Introduction

Going one step further, if we act on this matrix ̺(x, u), we obtain

̺(̃x, ũ) =

⎛
⎜⎜⎜⎜⎜⎝

1

ũ
0 −

x̃

ũ

0
1

ũ
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1

u
0 −

x

u

0
1

u
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1

λ
0 −

k

λ

0
1

λ
0

0 0 1

⎞
⎟⎟⎟⎟⎠

= ̺(x, u)

⎛
⎝

λ 0 k

0 λ 0

0 0 1

⎞
⎠

−1

.

What this result means is that ‘the frame’ is equivariant with respect to the

mapping (0.6).

The miracle is that the entire symbolic calculus can be built from the equiv-

ariance of the frame and ordinary multivariable calculus, even if you do not

know the frame explicitly, that is, even if you cannot solve the equations giving

the frame for the parameters.

The one caveat is that not any old mapping involving parameters can be

studied this way; the mapping (0.6) is in fact a Lie group action, where the Lie

group is the set of 3 × 3 matrices

⎧
⎨
⎩

⎛
⎝

λ 0 k

0 λ 0

0 0 1

⎞
⎠ | λ, k ∈ R, λ > 0

⎫
⎬
⎭

(amongst other representations) which is closed under multiplication and inver-

sion.

Not all group actions are linear like (0.6), and since we do not need to assume

linearity for any of the theory to be valid, we do not assume it. However, often

the version of a theorem assuming a linear action is easier to state and prove,

and so we tend to do both.
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Overview of this book 9

Overview of this book

My primary aim in writing this book was to bring the theory and applications

of moving frames to an audience not wishing to learn Differential Geometry

first, to show how the calculations can be done using primarily undergraduate

calculus, and to provide a discussion of a range of applications in a fully detailed

way so that readers can do their own calculations without undue headscratching.

The main subject matter is, first and foremost, smooth group actions on

smooth spaces. Surprisingly, this includes applications to many seemingly

discrete problems. The groups referred to in this book are Lie groups, groups

that depend on real or complex parameters. In Chapter 1 we discuss the basic

notions concerning Lie groups and their actions, particularly their actions as

prolonged to derivative terms. Since there is a wealth of excellent texts on

this topic, we cruise through the examples, calculations and basic definitions,

introducing the main examples I use throughout.

The following two chapters give foundational material for Lie theory as I

use and need it for this book. I could not find a good text with exactly what was

needed, together with suitable examples and exercises, so I have written this

myself, proving everything from scratch. While I imagine most readers will

only refer to them as necessary, hopefully others will be inspired to learn more

Differential Topology and Lie Theory from texts dedicated to those topics.

In Chapter 2, I discuss how multivariable calculus extends to a calculus on

Lie groups; this is mostly an introduction to standard Differential Topology for

the particular cases of interest, and a discussion of the central role played by

one parameter subgroups. The point of view taken in Differential Topology, on

‘what is a vector’ and ‘what is a vector field’, is radically different to that taken

in Differential Geometry. The first theory bases the notion of a vector on a path,

the second on the algebraic notion of a derivation acting on functions. There are

serious problems with a definition of a vector field as a derivation.† On the other

hand, the notion of a vector as a path in the space, which can be differentiated at

its distinguished point in coordinates, is a powerful, all purpose, take anywhere

idea that has a clear and explicit link to standard multivariable calculus. Further,

anyone who has witnessed a leaf being carried by water, or a speck of dust

being carried by the wind, has already developed the necessary corresponding

intuitive notion. Armed with the clear and useful notion of a vector as a path,

everything we need can be proved from the theorem guaranteeing the existence

and uniqueness of a solution to first order differential systems. So as to give

† Not the least problem is that the chain rule needed for the transformation of vectors does not
follow from this definition alone, which can apply equally well to strictly algebraic objects.
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10 Introduction

those well versed in one language insight into the other, we give some links

between the two sets of ideas and the relevant notations.

In the second chapter on the foundations of Lie theory, Chapter 3, we discuss

the Lie bracket of vector fields and Frobenius’ Theorem and from there, the

Lie algebra, the Lie bracket, and the Adjoint and adjoint actions. The two

quite different appearances of the formulae for the Lie bracket, for matrix

groups and transformation groups, are shown to be instances of the one general

construction, which in turn relies on the Lie bracket of vector fields in R
n. While

many authors simply give the two different formulae as definitions, I was not

willing to do that for reasons I make clear in the introduction to that chapter.

Chapters 4 and 5 are the central chapters of the book. The key idea under-

lying the symbolic invariant calculus is a formulation of a moving frame as

an equivariant map from space M on which the group G acts, to the group

itself. When one can solve for the frame, one has explicit invariants and invari-

ant differential operators. When one cannot solve for the frame, then one has

symbolic invariants and invariant differential operators. This is the topic of

Chapter 4, which introduces the distinguished set of symbolic invariants and

symbolic invariant differentiation operators used throughout the rest of the

book. Chapter 5 continues the main theoretical development to discuss

the differential relations or syzygies satisfied by the invariants, and introduces

the curvature matrices. These are well known in differential geometry, and we

discuss the famous Serret–Frenet frame, but they have other applications; in

particular, they can be used to solve numerically for the frame. Both chapters

have sections detailing various applications and further developments; sections

designated by a star, *, can be omitted on a first reading.

From this firm theoretical foundation, a host of applications can be described.

The two most developed applications in this book are to solving invariant

ordinary differential equations, and to the Calculus of Variations. In fact, there

is a long history of using smooth group actions to solve invariant ordinary

differential equations; normally one would think of this theory as a success

story, with little more to say. However, we describe in Chapter 6 just how much

more can be achieved with the new ideas. Similarly, the Calculus of Variations

is a classical subject that one might think of as fully mature. In Chapter 7, the

use of the new ideas throws substantial light on the structure of the known

results when invariance under a smooth group action is given.

The three applications that pleased me the most were solving the Chazy

equation, finding the equations for a free rigid body without any mysterious

concepts, and the final theorem of the book, showing the structure of the first

integrals given by Noether’s Theorem. All three came out of trying to develop

interesting exercises for this book.
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