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in this book.
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istic simulations, and multiscale techniques, the book explains many of the key theoretical

ideas behind multiscale modeling. Classical topics are blended with new techniques to

demonstrate the connections between different fields and highlight current research trends.

Example applications drawn from modern research on the thermomechanical properties of

crystalline solids are used as a unifying focus throughout the text.

Together with its companion book, Continuum Mechanics and Thermodynamics

(Cambridge University Press, 2012), this work presents the complete fundamentals of

materials modeling for graduate students and researchers in physics, materials science,

chemistry, and engineering.
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Preface

Studying materials can mean studying almost anything, since all of the physical, tangible

world is necessarily made of something. Normally, we think of studying materials in the

sense of materials science and engineering – an endeavor to understand the properties of

natural and man-made materials and to improve or exploit them in some way – but even

this includes broad and disparate goals. One can spend a lifetime studying the strength

and toughness of steel, for example, and never once concern oneself with its magnetic

or electric properties. At the same time, modeling in science can mean many things to

many people, ranging from computer simulation to analytical effective theories to abstract

mathematics. To combine these two terms “modeling materials” as the title of a single

book, then, is surely to invite disaster. How could it be possible to cover all the topics that

the product modeling × materials implies? Although this book remains true to its title, it

will be necessary to pick and choose our topics so as to have a manageable scope. To start

with, then, we have to decide: what models and what materials do we want to discuss?

As far as modeling goes, we must first recognize the fact that materials exhibit phe-

nomena on a broad range of spatial and temporal scales that combine together to dictate

the response of a material. These phenomena range from the bonding of individual atoms

governed by quantum mechanics to macroscopic deformation processes described by con-

tinuum mechanics. Various aspects of materials behavior and modeling, which tend to focus

on specific phenomena at a given scale, have traditionally been treated by different disci-

plines in science and engineering. The great disparity in scales and the interdisciplinary

nature of the field are what makes modeling materials both challenging and exciting. It is

unlikely that any one researcher has sufficient background in engineering, physics, mate-

rials science and mathematics to understand materials modeling at every length and time

scale. Furthermore, there is increased awareness that materials must be understood, not

only by rigorous treatment of phenomena at each of these scales alone, but rather through

consideration of the interactions between these scales. This is the paradigm of multiscale

modeling that will also be a persistent theme throughout the book.

Recognizing the need to integrate models from different disciplines creates problems

of nomenclature, notation and jargon. While we all strive to make our research specialties

clear and accessible, it is a necessary part of scientific discourse to create and use spe-

cific terms and notation. An unintended consequence of this is the creation of barriers to

interdisciplinary understanding. One of our goals is to try to facilitate this understanding

by providing a unified presentation of the fundamentals, using a common nomenclature,

notation and language that will be accessible to people across disciplines. The result is this

book on Modeling Materials (MM) and our companion book on Continuum Mechanics

and Thermodynamics (CMT) [TME12].

xiii
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The subject matter in MM is divided into four parts. Part I covers continuum mechanics

and thermodynamics concepts that serve as the basis for the rest of the book. The descrip-

tion of continuum mechanics and thermodynamics is brief and is only meant to make MM

a stand-alone book. The reader is referred to CMT for a far deeper view of these subjects

consistent with the rest of MM. Part II covers atomistics, discussing the basic structure and

symmetries of crystalline materials, quantum mechanics and more approximate empirical

models for describing bonding in materials, and molecular statics – a computational ap-

proach for studying static properties of materials at the atomic scale. Part III focuses on the

atomistic foundations of continuum concepts. Here, using ideas from statistical mechanics,

connections are forged between the discrete world of atoms – described by atomic positions,

velocities and forces – and continuum concepts such as fields of stress and temperature.

Finally, the subject of molecular dynamics (MD) is presented. We treat MD as a computa-

tional method for studying dynamical properties of materials at the atomic scale subject to

continuum-level constraints, so it is yet another unique connection between the atomistic

and continuum views. Part IV on multiscale methods describes a class of computational

methods that attempt to model material response by simultaneously describing its behavior

on multiple spatial and temporal scales. This final part of the book draws together and

unifies many of the concepts presented earlier and shows how these can be integrated into

a single modeling paradigm.

By bringing together this unusual combination of topics, we provide a treatment that is

uniquely different from other books in the field. First, our focus is on a critical analysis and

understanding of the fundamental assumptions that underpin these methods and that are

often taken for granted in other treatments. We believe that this focus on fundamentals is

essential for anyone seeking to combine different theories in a multiscale setting. Secondly,

some of the topics herein are often treated from the perspective of the gaseous or liquid states.

Here, our emphasis is on solids, and this changes the presentation in important ways. For

example, in statistical mechanics we comprehensively discuss the subject of the stress tensor

(not just pressure) and the concept of a restricted ensemble for metastable systems. Similarly,

we talk at length about constant stress simulations in MD and how to correctly interpret

them in a setting of finite deformation beyond that of simple hydrostatic compression. Third,

while covering this broad range of topics we strive to regularly make connections between

the atomistic, statistical and continuum worldviews. Finally, we have tried to create a healthy

balance between fundamental theory and practical “how to.” For example, we present, at

length, the practical implementation of such topics as density functional theory, empirical

atomistic potentials, molecular statics and dynamics, and multiscale partitioned-domain

methods. It is our hope that someone with basic computer programming skills will be able

to use this book to implement any of these methods, or at least to better understand an

implementation in a pre-existing code.

Although the modeling methods we describe are, in principle, applicable to any material,

we focus our scope of materials and properties on those that we, the authors, know best.

The answer to “What materials?” then is crystalline solids and their thermomechanical

(as opposed to electrical, optical or chemical) properties. For the most part, these serve

as examples to illustrate the application and usefulness of the modeling methods that we
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describe, but we hope that the reader will also learn something new regarding the materials

themselves along the way.

Even starting from this narrow mandate we have already failed, to some degree, in our

goal of putting all the fundamentals in one place. This is because the binding of these

subjects into a single volume becomes unwieldy if we wish to maintain the level of detail

that we feel is necessary. To make room in this book, we sacrificed coverage of continuum

mechanics, leaving only a concise summary in Chapter 2 of the key results needed to make

contact with the rest of the topics. CMT [TME12], the companion volume to this one,

provides the full details of the continuum mechanics and thermodynamics that we believe

to be fundamental to materials modeling.

Both books, MM and CMT, are addressed to graduate students and researchers in chem-

istry, engineering, materials science, mathematics, mechanics and physics. The interdisci-

plinary nature of materials modeling means that researchers from all of these fields have

contributed to and continue to be engaged in this field. The motivation for these books

came from our own frustration, and that of ours students, as we tried to acquire the breadth

of knowledge necessary to do research in this highly interdisciplinary field. We have made

every effort to eliminate this frustration in the future by making our writing accessible to

all readers with an undergraduate education in an engineering or scientific discipline. The

writing is self-contained, introducing all of the necessary basic concepts and building up

from there. Of course, by necessity that means that our coverage of the different topics is

limited and skewed to our primary focus on materials modeling. At the end of each chap-

ter, we recommend sources for further reading for readers interested in expanding their

understanding in a particular direction.
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Notation

In a book covering such a broad range of topics, notation is a nightmare. We have attempted,

as much as possible, to use the most common and familiar notation from within each field as

long as this did not lead to confusion. However, this does mean that the occasional symbol

will serve multiple purposes, as the tables below will help to clarify. To keep the amount

of notation to a minimum, we generally prefer to append qualifiers to symbols rather than

introducing new symbols. For example, f is force, which if relevant can be divided into

internal, f int , and external, f ext , parts.

We use the following general conventions:

" Descriptive qualifiers generally appear as superscripts and are typeset using a Roman (as

opposed to Greek) nonitalic font.

" The weight and style of the font used to render a variable indicates its type. Scalar

variables are denoted using an italic font. For example, T is temperature. Array variables

are denoted using a sans serif font, such as A for the matrix A. Vectors and tensors (in

the technical sense of the word) are rendered in a boldface font. For example, Ã is the

stress tensor.

" Variables often have subscript and superscript indices. Indices referring to the compo-

nents of a matrix, vector or tensor appear as subscripts in italic Roman font. For example,

vi is the ith component of the velocity vector. Superscripts are used as counters of vari-

ables. For example, F e is the deformation gradient in element e. Superscripts referring

to atoms are distinguished by using a Greek letter. For example, the velocity of atom ³

is denoted v³ . Iteration counters appear in parentheses, for example f (i) is the force in

iteration i.

" The Einstein summation convention is followed on repeated indices (e.g. vivi = v2
1 +

v2
2 + v2

3 ), unless otherwise clear from the context. (See Section 2.1.1 for more details.)

" One special type of superscript concerns the denotation of Bravais lattices and crystals.

For example, the position vector R[�» ] denotes the »th basis atom associated with Bravais

lattice site �. (See Section 3.6 for details.)

" A subscript is used to refer to multiple equations on a single line, for example

“Eqn. (2.66)2” refers to the second equation in Eqn. (2.66) (“ai(x, t) c . . . ”).

" Important equations are emphasized by shading.

Below, we describe the main notation and symbols used in the book, and indicate the page

on which each is first defined. We also include a handy list of fundamental constants and

unit conversions at the end of this section.

xxi
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xxii Notation
�

Mathematical notation

Notation Description Page

c equal to by definition 28

:= variable on the left is assigned the value on the right 24

" for all 28

* contained in 28

iff if and only if 28

O(f) terms proportional to order f 188

O(n) orthogonal group of degree n 31

SO(n) proper orthogonal (special orthogonal) group of degree n 31

R set of all real numbers 26

R
n real coordinate space (n-tuples of real numbers) 27

| " | absolute value of a real number 28

�"� norm of a vector 28

�", "� inner product of two vectors 28

�"|"� inner product of two vectors (bra-ket notation) 161

�"| " |"� bra-operator-ket inner product 163

[uvw] direction in a crystal (ua + vb + wc) 125

�uvw� family of crystal directions 125

(hkl) Miller indices denoting a crystallographic plane 150

{hkl} family of crystallographic planes 151

{M | C} a set of members M such that conditions C are satisfied 245

" time average of a quantity 388

�"� phase average of a quantity 391

�"; f� phase average of a quantity relative to distribution function f 391

Pr(O) probability of outcome O 395

Var(A) variance of A: Var(A) =
�
A2

�
2 (�A�)2 396

Cov(A,B) covariance of A and B: Cov(A,B) = �AB� 2 �A� �B� 461

CovÇ(A,B) covariance of A and B in a restricted ensemble 577
�f(k) Fourier transform of f(x) 166

f
�
(s) Laplace transform of a f(t) 684

"7 complex conjugate 161

AT transpose of a matrix or second-order tensor: [AT ]ij = Aj i 25

A2T transpose of the inverse ofA: A2T c (A21)T 35

a · b dot product (vectors): a · b = aibi 28

a × b cross product (vectors): [a × b]k = �ijkaibj 30

a · b tensor product (vectors): [a · b]ij = aibj 33

A : B contraction (second-order tensors): A : B = AijBij 36

A · ·B transposed contraction (second-order tensors): A · ·B = AijBj i 36

»A
³ , ΛA

³ ³th eigenvalue and eigenvector of the second-order tensor A 38

IA

k kth principal invariant of the second-order tensor A 38

det A determinant of a matrix or a second-order tensor 26

trA trace of a matrix or a second-order tensor: trA = Aii 25
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xxiii Notation
�

'", grad " gradient of a tensor (deformed configuration) 40

'0", Grad " gradient of a tensor (reference configuration) 45

curl " curl of a tensor (deformed configuration) 41

Curl " curl of a tensor (reference configuration) 45

div " divergence of a tensor (deformed configuration) 41

Div " divergence of a tensor (reference configuration) 45

'2" Laplacian of a tensor (deformed configuration) 41

d̄ inexact differential 81

r³³̊ position vector to closest periodic image of ³ to atom ³ 326
�

³,
#
³ unit cell and sublattice of atom ³ in a multilattice crystal 564

General symbols – Greek

Symbol Description Page

Γ phase space 382

Γ, Γi set of extensive kinematic state variables 63

Γi wave vector of the ith DFT plane wave basis function 211

³, ³i set of intensive state variables work conjugate with Γ 78

³ damping coefficient 511

³s surface energy 340

³GB grain boundary energy 346

³SF stacking fault energy 357

·ij Kronecker delta 25

� energy of an electron 164

�, �ij small strain tensor 49

�ijk permutation symbol 26

·³
i fractional coordinates of basis atom ³ 142

»³³³· scalar atomistic stiffness term relating bonds ³–³ and ³–· 297

Λ de Broglie thermal wavelength 241

Λi projection operator 162

» Lamé constant 105

» plane wave wavelength 164

¿ shear modulus (solid) 105

¿(m) mth moment of a function 230

¿ Poisson’s ratio 105

¿e number of atoms associated with element e in QC 612

Π total potential energy of a system and the applied loads 107

Π
³ , Π³

i pull-back momentum of atom ³ 452

Ã mass density (deformed configuration) 52

Ã electron density 188

Ã0 mass density (reference configuration) 52

Ãpt pointwise (microscopic) mass density field 468
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xxiv Notation
�

Ã³ total electron density at atom ³ in a pair functional 263

Σ(E; ∆E) hypershell in phase space with energy E and thickness ∆E 404

Ã, Ãij Cauchy stress tensor 56

Ãinst , Ãinst
ij instantaneous atomic-level stress 457

Ãpt , Ãpt
ij pointwise (microscopic) Cauchy stress tensor 470

Ãpt,K , Ãpt,K
ij kinetic part of the pointwise (microscopic) Cauchy stress 471

Ãpt,V , Ãpt,V
ij potential part of the pointwise (microscopic) Cauchy stress 471

×, ×i deformation mapping 43

Ç(r) pair potential as a function of distance r 251

× electron wave basis function 173

×³³ scalar magnitude of force on atom ³ due to presence of atom ³ 291

Ç general, time-dependent electronic wave function 163

Ç characteristic function in restricted ensemble 554

Ë specific Helmholtz free energy 95

Ë general, time-independent electronic wave function 165

Ësp single-particle, time-independent electronic wave function 194

Ω volume of a periodic simulation cell in a DFT simulation 210

Ω0 nonprimitive unit cell volume in reference configuration 124
�Ω volume of the first Brillouin zone 208
�Ω0 primitive unit cell volume in reference configuration 122

Ω(E; ∆E) volume of hypershell Σ(E; ∆E) in phase space 404

Ì plane wave frequency 164

General symbols – Roman

Symbol Description Page

A macroscopic observable associated with phase function A(q,p) 387

A(q,p) phase function associated with macroscopic observable A 387

A1 , A2 , A3 reference nonprimitive lattice vectors 123

Â1 , Â2 , Â3 reference primitive lattice vectors 120

a, ai acceleration vector 50

a1 ,a2 ,a3 nonprimitive lattice vector (deformed configuration) 561

B the first Brillouin zone 212

B bulk modulus 112

B(x;u,v) bond function at x due to the spatially averaged bond u–v 479

B1 , B2 , B3 reciprocal reference lattice vectors 147

B, Bij left Cauchy–Green deformation tensor 47

BO bond order 272

b, bi body force (spatial description) 55

b, bi Burgers vector 351

bpt , bpt
i pointwise (microscopic) body force field 470

C the DFT simulation cell 210
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xxv Notation
�

Cv molar heat capacity at constant volume 69

C, CIJ right Cauchy–Green deformation tensor 47

C, CIJ K L referential elasticity tensor 101

cv specific heat capacity at constant volume 70

cI , cI j , c³
iI Ith eigenvector solution and its components (associated with

plane wave j or orbital i on atom ³)

176

c, cijk l spatial (or small strain) elasticity tensor 102

c, cmn elasticity matrix (in Voigt notation) 104

D(E) density of states (statistical mechanics) 405

D(�) electronic density of states 230

D³
i electronic density of states for orbital i on atom ³ 230

D, DiJ kL mixed elasticity tensor 102

d, dij rate of deformation tensor 50

E total energy of a thermodynamic system 68

E Young’s modulus 105

Efree(Z) energy of a free (isolated) atom with atomic number Z 247

Ecoh , E0
coh cohesive energy and equilibrium cohesive energy 332

E, EIJ Lagrangian strain tensor 48

ei orthonormal basis vectors 27

F ext total external force acting on a system 54

F , FiJ deformation gradient 46

f occupancy of an electronic orbital 208

f(q,p; t) distribution function at point (q,p) in phase space at time t 391

fmc(q,p;E) microcanonical (NVE) distribution function 407

fc(q,p;T ) canonical (NVT) distribution function 427

f³ , f³
i force on atom ³ 54

f³³ , f³³
i force on atom ³ due to the presence of atom ³ 289

f int,³ , f int,³
i internal force on atom ³ 289

f ext,³ , f ext,³
i external force on atom ³ 289

f column matrix of finite element nodal forces 603

G³ , G³
i stochastic force on atom ³ 511

g specific Gibbs free energy 96

g(r) electron density function in a pair functional 264

H Hamiltonian of a system 159

H , Hi angular momentum 58

H0 matrix of periodic cell vectors (reference configuration) 326

H matrix of periodic cell vectors (deformed configuration) 326

Ĥ matrix of reference primitive lattice vectors 120

I identity tensor 34

I identity matrix 25

J Jacobian of the deformation gradient 46

K macroscopic (continuum) kinetic energy 68

K stiffness matrix or Hessian 312

k wave vector and Fourier space variable 146
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xxvi Notation
�

L Lagrangian function 158

L, Li linear momentum 54

L, Li vectors defining a periodic simulation cell (reference) 325

l, li vectors defining a periodic simulation cell (deformed) 563

l, lij spatial gradient of the velocity field 50

M total mass of a system of particles 380

Mcell mass of a unit cell 567

M ext total external moment acting on a system 58

M finite element mass matrix 660

m,m³ mass, mass of atom ³ 54

N ³ set of atoms forming the neighbor list to atom ³ 324

N number of particles/atoms 54

NB number of basis atoms 142

N̂B number of basis atoms in the primitive unit cell 140

Nlat number of lattice sites 563

nd dimensionality of space 22

Pdef deformation power 86

Pext external power 85

P , PiJ first Piola–Kirchhoff stress tensor 59

P³ , P³
i reference momentum of atom ³ 452

p pressure (or hydrostatic stress) 57

p³ , p³
i momentum of atom ³ 54

p³
rel center-of-mass momentum of atom ³ 380

p, pi momentum of an electron or atom 164

p, pi generalized momenta in statistical mechanics 382

∆Q heat transferred to a system during a process 68

Q,Q³i orthogonal transformation matrix 31

q, qi spatial heat flux vector 87

q0 , q0I reference heat flux vector 88

q, qi generalized positions in statistical mechanics 382

q̄, q̄i generalized mean positions in restricted ensemble 556

R rate of heat transfer 85

R, RiJ finite rotation (polar decomposition) 47

R[�» ] reference position of the »th basis atom of lattice site � 141

R, Ri center of mass of a system of particles 380

R³ , R³
i reference position of atom ³ 242

r spatial strength of a distributed heat source 87

r0 reference strength of a distributed heat source 88

r³ , r³
i spatial position of atom ³ 54

r̄³ , r̄³
i mean position of atom ³ in restricted ensemble 556

r³
rel center-of-mass coordinates of atom ³ 380

S electronic orbital overlap 225

S entropy 73

S» set of all atoms belonging to sublattice » in a multilattice 564
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xxvii Notation
�

SI shape function for finite element node I 602

SE hypersurface of constant energy E in phase space 382

S, SIJ second Piola–Kirchhoff stress tensor 60

s specific entropy 88

s, sijk l spatial (or small strain) compliance tensor 103

s̄» , s̄»
i shift vector of basis atom » 560

T instantaneous microscopic kinetic energy 158

T vib microscopic (vibrational) kinetic energy 379

T el instantaneous kinetic energy of the electrons 190

T s instantaneous kinetic energy of the noninteracting electrons 192

T temperature 65

T , Ti nominal traction (stress vector) 60

t, ti true traction (stress vector) 56

t̄, t̄i true external traction (stress vector) 55

U internal energy 68

U potential energy of a quantum mechanical system 169

U(Ã) embedding energy term in a pair functional 263

U(z) unit step function (Heaviside function) 404

U , UIJ right stretch tensor 47

u spatial specific internal energy 85

u0 reference specific internal energy 88

u, ui displacement vector 48

�u, �ui finite element approximation to the displacement field 602

u column matrix of finite element nodal displacements 601

V potential energy of a classical system of particles 158

V int internal (interatomic) part of the potential energy 240

Vext total external part of the potential energy 240

Vext
fld , Vext

con potential energy due to external fields and external contact 240

V0 volume (reference configuration) 46

V volume (deformed configuration) 46

V ³
0 volume of atom ³ (reference configuration) 457

V ³ volume of atom ³ (deformed configuration) 457

VR volume of region R in phase space 384

V , Vij left stretch tensor 47

v, vi velocity vector 50

vpt , vpt
i pointwise (microscopic) velocity field 468

v³ , v³
i velocity of atom ³ 54

v³
rel , v³

rel,i velocity of atom ³ relative to center of mass 471

v column matrix of finite element nodal velocities 660

∆W work performed on a system during a process 67

W virial of a system of particles 422

W strain energy density function 96

w(r), ŵ(r) spatial averaging weighting function (general and spherical) 476

w, wij spin tensor 50
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xxviii Notation
�

w³ , w³
i displacement of atom ³ relative to its mean position 556

X , XI position of a point in a continuum (reference configuration) 43

X column matrix of finite element nodal coordinates 601

x, xi position of a point in a continuum (deformed configuration) 43

x, xi position of an electron 156

Z atomic number 176

Z partition function 426

ZK ,ZV kinetic and potential parts of the partition function 427

Ẑ³ position of basis atom ³ relative to the Bravais site 141

z valence of an atom (or charge on an ion) 198

Fundamental constants

Avogadro’s constant (NA ) 6.0221 × 1023 mol21

Bohr radius (r0) 0.52918 Å

Boltzmann’s constant (kB ) 1.3807 × 10223 J/K

8.6173 × 1025 eV/K

charge of an electron (ẽ) 1.6022 × 10219 C

charge-squared per Coulomb constant

(ẽ2/4Ã�0 c e2) 14.4 eV · Å

mass of an electron (mel) 9.1094 × 10231 kg

permittivity of free space (�0) 8.8542 × 10212 C2/(J · m)

Planck’s constant (h) 6.6261 × 10234 J · s

4.1357 × 10215 eV · s

Planck’s constant, reduced (� = h/2Ã) 1.0546 × 10234 J · s

6.5821 × 10216 eV · s

universal gas constant (Rg ) 8.3145 J/(K · mol)

Unit conversion

1 fs = 10215 s (femto)

1 ps = 10212 s (pico)

1 ns = 1029 s (nano)

1 µs = 1026 s (micro)

1 ms = 1023 s (milli)

1 Å = 10210 m = 0.1 nm (ångstrom)

1 eV = 1.60212 × 10219 J

1 eV/Å = 1.60212 × 1029 N = 1.60212 nN

1 eV/Å
2

= 16.0212 J/m2 = 16.0212 N/m

1 eV/Å
2.5

= 1.60212 × 106 N/m1.5 = 1.60212 MPa · :m

1 eV/Å
3

= 1.60212 × 1011 N/m2 = 160.212 GPa

1 amu = 1.66054 × 10227 kg = 1.03646 × 1024eV · ps2/Å2
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