Modeling Materials

Material properties emerge from phenomena on scales ranging from ångstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book.

Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations, and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermomechanical properties of crystalline solids are used as a unifying focus throughout the text.

Together with its companion book, *Continuum Mechanics and Thermodynamics* (Cambridge University Press, 2012), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry, and engineering.

Ellad B. Tadmor is Professor of Aerospace Engineering and Mechanics, University of Minnesota. His research focuses on the development of multiscale theories and computational methods for predicting the behavior of materials directly from the interaction of the atoms.

Ronald E. Miller is Professor of Mechanical and Aerospace Engineering, Carleton University. He has worked in the area of multiscale materials modeling for over 15 years and has published more than 40 scientific articles in the area.

Modeling Materials

Continuum, Atomistic and Multiscale Techniques

ELLAD B. TADMOR University of Minnesota, USA

RONALD E. MILLER

Carleton University, Canada

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521856980

© E. Tadmor and R. Miller 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2011 5th printing 2020

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Tadmor, Ellad B., 1965– Modeling materials : continuum, atomistic, and multiscale techniques / Ellad B. Tadmord, Ronald E. Miller. p. cm. Includes bibliographical references and index. ISBN 978-0-521-85698-0 (hardback)

1. Materials – Mathematical models. I. Miller, Ronald E. II. Title. TA404.23.T33 2011

620.1'10113 - dc23 2011025635

ISBN 978-0-521-85698-0 Hardback

Additional resources for this publication at www.cambridge.org/9780521856980

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-0-521-85698-0 — Modeling Materials Continuum, Atomistic and Multiscale Techniques Ellad B. Tadmor , Ronald E. Miller Frontmatter <u>More Information</u>

Contents

Preface	<i>page</i> xiii
Acknowledgments	xvi
Notation	xxi
1 Index du stion	1
	1
1.1 Multiple scales in crystalline materials	1
1.1.1 Orowan's pocket watch	1
1.1.2 Mechanisms of plasticity	3
1.1.3 Perfect crystals	4
1.1.4 Planar defects: surfaces	10
1.1.5 Planar defects: grain boundaries	10
1.1.0 Life defects	12
1.1.7 Tomit defects	15
1.2 Materials scales: taking steak	10
1.2 Materials scales, taking slock	17
Further reading	18
Part I Continuum mechanics and thermodynamics	19
·	
2 Essential continuum mechanics and thermodynamics	21
2.1 Scalars, vectors, and tensors	22
2.1.1 Tensor notation	22
2.1.2 Vectors and higher-order tensors	26
2.1.3 Tensor operations	33
2.1.4 Properties of second-order tensors	37
2.1.5 Tensor fields	39
2.2 Kinematics of deformation	42
2.2.1 The continuum particle	42
2.2.2 The deformation mapping	43
2.2.3 Material and spatial descriptions	44
2.2.4 Description of local deformation	46
	49
2.3 Mechanical conservation and balance laws	51
2.3.1 Conservation of mass	51
2.3.2 Balance of angular momentum	55
2.3.5 Datative of aligniat momentum balance equations	38 50
2.3.4 What has form of the momentum balance equations	39

v

© in this web service Cambridge University Press & Assessment

vi	Contents			
	2.4 Thermodynamics	61		
	2.4.1 Macroscopic observables, thermodynamic equilibrium and state variables	61		
	2.4.2 Thermal equilibrium and the zeroth law of thermodynamics	65		
	2.4.3 Energy and the first law of thermodynamics	67		
	2.4.4 Thermodynamic processes	71		
	2.4.5 The second law of thermodynamics and the direction of time	72		
	2.4.6 Continuum thermodynamics	83		
	2.5 Constitutive relations	90		
	2.5.1 Constraints on constitutive relations	91		
	2.5.2 Local action and the second law of thermodynamics	92		
	2.5.3 Material frame-indifference	97		
	2.5.4 Internal symmetry 2.5.5 Linearized constitutive relations for anisotronic hyperelastic solids	101		
	2.6. Boundary value problems and the principle of minimum potential energy	101		
	2.0 Boundary-value problems and the principle of minimum potential energy	105		
	Further reading	108		
	Exercises	109		
	Part II Atomistics	113		
	3 Lattices and crystal structures	115		
	3.1 Crystal history: continuum or corpuscular?	115		
	3.2 The structure of ideal crystals	119		
	3.3 Lattices	119		
	3.3.1 Primitive lattice vectors and primitive unit cells	120		
	3.3.2 Voronoi tessellation and the Wigner-Seitz cell	122		
	3.3.3 Conventional unit cells	123		
	3.3.4 Crystal directions	124		
	3.4 Crystal systems	125		
	3.4.1 Point symmetry operations	125		
	3.4.2 The seven crystal systems	129		
	3.5 Bravais lattices	134		
	3.5.1 Centering in the cubic system	134		
	3.5.2 Centering in the triclinic system	137		
	3.5.3 Centering in the monoclinic system	137		
	3.5.4 Centering in the orthorhombic and tetragonal systems	138		
	3.5.6 Summary of the fourteen Bravais lattices	130		
	2.6. Crystal attracture	120		
	3.6.1. Essential and nonessential descriptions of crystals	139		
	3.6.2 Crystal structures of some common crystals	142		
	3.7 Some additional lattice concepts	146		
	3.7.1 Fourier series and the reciprocal lattice	146		
	3.7.2 The first Brillouin zone	148		
	3.7.3 Miller indices	149		
	Further reading	151		
	Exercises	151		

Contents			
4 Quantum mechanics of materials	15.		
4.1 Introduction	15.		
4.2 A brief and selective history of quantum mechanics	154		
4.3 The Hamiltonian formulation	15		
4.4 The quantum theory of bonding	16		
4.4.1 Dirac notation	16		
4.4.2 Electron wave functions	16.		
4.4.3 Schrödinger's equation	16		
4.4.4 The time-independent Schrödinger equation	17		
4.4.5 The hydrogen atom 4.4.6 The hydrogen molecule	17		
4.4.7 Summary of the quantum mechanics of bonding	18		
4.5. Density functional theory (DET)	18		
4.5 1 Exact formulation	18		
4.5.2 Approximations necessary for computational progress	19		
4.5.3 The choice of basis functions	19		
4.5.4 Electrons in periodic systems	20		
4.5.5 The essential machinery of a plane-wave DFT code	21		
4.5.6 Energy minimization and dynamics: forces in DFT	22		
4.6 Semi-empirical quantum mechanics: tight-binding (TB) methods	22		
4.6.1 LCAO	22		
4.6.2 The Hamiltonian and overlap matrices	22		
4.6.3 Slater–Koster parameters for two-center integrals	22		
4.6.4 Summary of the TB formulation	22		
4.6.5 TB molecular dynamics	22		
Further reading	22		
Further reading	23		
Exercises	23		
5 Empirical atomistic models of materials	23		
5.1 Consequences of the Born–Oppenheimer approximation (BOA)	23		
5.2 Treating atoms as classical particles	24		
5.3 Sensible functional forms	24		
5.3.1 Interatomic distances	24		
5.3.2 Requirement of translational, rotational and parity invariance	24		
5.3.3 The cutoff radius	24		
5.4 Cluster potentials	24		
5.4.1 Formally exact cluster potentials	24		
5.4.2 Pair potentials	25		
5.4.3 Modeling ionic crystals: the Born–Mayer potential	25		
5.4.4 Three- and four-body potentials	25		
5.4.5 Modeling organic molecules: CHARMM and AMBER	25		
5.4.0 Limitations of cluster potentials and the need for interatomic functionals	26		
5.5 1 The contributional former the star EAM EMT EQ. 11	26		
5.5.1 The generic pair functional form: the glue-EAM-EM I-FS model	20		
5.5.2 Fifting the pair functional model	20 26		
5.5.4 Company and functional to chester actanticle	20		

viii	Contents			
	5.6 Cluster functionals	268		
	5.6.1 Introduction to the bond order: the Tersoff potential	268		
	5.6.2 Bond energy and bond order in TB	271		
	5.6.3 ReaxFF	274		
	5.6.4 The modified embedded atom method	276		
	5.7 Atomistic models: what can they do?	279		
	5.7.1 Speed and scaling: how many atoms over how much time?	279		
	5.7.2 Transferability: predicting behavior outside the fit	282		
	5.7.5 Classes of materials and our ability to model them	203		
	5.8 Interatomic forces in empirical atomistic models	288		
	5.8.1 weak and strong laws of action and reaction	200		
	5.8.2 Atomic forces for some specific interatomic models	291		
	5.8.4 Bond stiffnesses for some specific interatomic models	297		
	5.8.5 The cutoff radius and interatomic forces	298		
	Further reading	299		
	Exercises	300		
	6 Molecular statics	304		
	6.1 The potential energy landscape	304		
	6.2 Energy minimization	306		
	6.2.1 Solving nonlinear problems: initial guesses	306		
	6.2.2 The generic nonlinear minimization algorithm	307		
	6.2.3 The steepest descent (SD) method	308		
	6.2.4 Line minimization	310		
	6.2.5 The conjugate gradient (CG) method	311		
	6.2.6 The condition number	312		
	6.2.7 The Newton–Raphson (NR) method	313		
	6.3 Methods for finding saddle points and transition paths	315		
	6.3.1 The nudged elastic band (NEB) method	316		
	6.4 Implementing molecular statics	321		
	6.4.1 Neighbor lists	321		
	6.4.2 Periodic boundary conditions (PBCs)	325		
	6.4.3 Applying stress and pressure boundary conditions	328		
	6.4.4 Boundary conditions on atoms	330		
	6.5 Application to crystals and crystalline detects	331		
	6.5.2 The universal binding energy relation (UBER)	332		
	6.5.2 Crystal defects: vacancies	338		
	6.5.4 Crystal defects: surfaces and interfaces	339		
	6.5.5 Crystal defects: dislocations	347		
	6.5.6 The γ -surface	357		
	6.5.7 The Peierls-Nabarro model of a dislocation	360		
	6.6 Dealing with temperature and dynamics	371		
	Further reading	371		
	Exercises	372		
		512		

 Part II Atomistic foundations of continuum concepts Jamilton's equations Phase space: dynamics of a system of atoms Phase space: dynamics of a system of atoms Phase space coordinates Phase space coordinates Phase space coordinates Ta Trajectories through phase space Ta Trajectories through phase space To tradition macroscopic observables Predicting macroscopic observables The meirocanonical (NVE) ensemble The meirocanonical (NVE) ensemble The meirocanonical distribution functions Why does the ensemble approach work? The meirocanonical distribution functions Sagetms in weak interaction Systems in weak interaction Systems in weak interaction Sequipartition and virial theorems: microcanonical derivation Genvariand (NVT) ensemble He canonical (NVT) ensemble Antenal energy, temperature and entropation Sequipartition and virial theorems: microcanonical derivation He canonical distribution functions He canonical (NVT) ensemble He canonical (NVT) ensemble He canonical distribution functions He canonical (NVT) ensemble He canonical distribution function He canonical (NVT) ensemble He canonical (NVT) ensemble He canonical distribution function He canonical distribution function He canonical distribution function He canonical distribution function He canonical (NVT) ensemble He canonical distribution functions He canonical distribution function He canonical distribution functions He canonical di	Contents			
 7 Classical equilibrium statistical mechanics Phase space: dynamics of a system of atoms Hamilton's equations Macroscopic translation and rotation A deroscopic translation and rotation S trajectories through phase space Frajectories through phase space Louville's theorem 7.2 Predicting macroscopic observables Tine averages Time averages The microcanonical (NVE) ensemble The microcanonical (NVE) ensemble The microcanonical (NVE) ensemble The microcanonical distribution functions Systems in weak interaction S prevaint of the ideal gas law S prevaint of the ideal gas law S prevaint of the ideal gas law The canonical distribution function The canonical distribution function The canonical distribution function Temperature and entropy The canonical distribution function The canonical distribution function The canonical distribution function Helmholtz free energy Helmholtz free energy in the thermodynamic limit Further reading Exercises 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations S.1.2 Microscopic estress tensor in a finite system at zero temperature S.1.3 Microscopic elasticity tensor Continuum fields as expectation values: nonequilibrium systems 	375			
 7.1 Phase space: dynamics of a system of atoms 7.1.1 Hamilton's equations 7.1.2 Macroscopic translation and rotation 7.1.3 Center of mass coordinates 7.1.4 Phase space coordinates 7.1.5 Trajectories through phase space 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic stress tensor in a finite system at zero temperature 8.1.2 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 	377			
 7.1.1 Hamilton's equations 7.1.2 Macroscopic translation and rotation 7.1.3 Center of mass coordinates 7.1.4 Phase space coordinates 7.1.4 Phase space coordinates 7.1.5 Trajectories through phase space 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy 7.4.6 Equipartition theorem: canonical derivation 7.4.7.5 Helmholtz free energy 7.4.8 Equipartition theorem: canonical derivation 7.4.9 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values: 	378			
 7.1.2 Macroscopic translation and rotation 7.1.3 Center of mass coordinates 7.1.4 Phase space coordinates 7.1.5 Trajectories through phase space 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor in a finite system at zero temperature 8.1.4 Microscopic stress tensor in a finite system at zero temperature 8.1.4 Microscopic distributions 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic distributions 8.1.4 Microscopic attess tensor in a finite system at zero temperature 8.1.4 Microscopic elasticity tensor 	378			
 7.1.3 Center of mass coordinates 7.1.4 Phase space coordinates 7.1.5 Trajectories through phase space 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy 7.4.6 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values	379			
 7.1.4 Phase space coordinates 7.1.5 Trajectories through phase space 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasteity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	380			
 7.1.5 Trajectories through phase space 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor in a finite system at zero temperature 8.1.4 Microscopic elasticity tensor 	381			
 7.1.6 Liouville's theorem 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 	382			
 7.2 Predicting macroscopic observables 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor in a finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	384			
 7.2.1 Time averages 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	387			
 7.2.2 The ensemble viewpoint and distribution functions 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical distribution function 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	387			
 7.2.3 Why does the ensemble approach work? 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical distribution function 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	389			
 7.3 The microcanonical (NVE) ensemble 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	392			
 7.3.1 The hypersurface and volume of an isolated Hamiltonian system 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	403			
 7.3.2 The microcanonical distribution function 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 	403			
 7.3.3 Systems in weak interaction 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	406			
 7.3.4 Internal energy, temperature and entropy 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of exprestion values 	409			
 7.3.5 Derivation of the ideal gas law 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic etasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	412			
 7.3.6 Equipartition and virial theorems: microcanonical derivation 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values	418			
 7.4 The canonical (NVT) ensemble 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	420			
 7.4.1 The canonical distribution function 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	423			
 7.4.2 Internal energy and fluctuations 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	424			
 7.4.3 Helmholtz free energy 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	428			
 7.4.4 Equipartition theorem: canonical derivation 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	429			
 7.4.5 Helmholtz free energy in the thermodynamic limit Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	431			
 Further reading Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	432			
 Exercises 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	437			
 8 Microscopic expressions for continuum fields 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	438			
 8.1 Stress and elasticity in a system in thermodynamic equilibrium 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	440			
 8.1.1 Canonical transformations 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	442			
 8.1.2 Microscopic stress tensor in a finite system at zero temperature 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	442			
 8.1.3 Microscopic stress tensor at finite temperature: the virial stress 8.1.4 Microscopic elasticity tensor 8.2 Continuum fields as expectation values: nonequilibrium systems 8.2.1 Rate of change of expectation values 	447			
8.1.4 Microscopic elasticity tensor8.2 Continuum fields as expectation values: nonequilibrium systems8.2.1 Rate of change of expectation values	450			
8.2 Continuum fields as expectation values: nonequilibrium systems8.2.1 Rate of change of expectation values	460			
8.2.1 Rate of change of expectation values	465			
	466			
8.2.2 Definition of pointwise continuum fields	467			
8.2.3 Continuity equation	469			
8.2.4 Momentum balance and the pointwise stress tensor	469			
8.2.5 Spatial averaging and macroscopic fields	475			
8.3 Practical methods: the stress tensor	479			
8.3.1 The Hardy stress	480			
8.3.2 The virial stress tensor and atomic-level stresses	481			
8.3.3 The Tsai traction: a planar definition for stress	482			
8.3.4 Uniqueness of the stress tensor	487			
8.3.5 Hardy, virial and Tsai stress expressions: numerical considerations	488			
Exercises	489			

X	Contents	
	9 Molecular dynamics	492
	9.1 Brief historical introduction	492
	9.2 The essential MD algorithm	495
	9.3 The NVE ensemble: constant energy and constant strain	497
	9.3.1 Integrating the NVE ensemble: the velocity-Verlet (VV) algorithm	497
	9.3.2 Quenched dynamics 9.3.3 Temperature initialization	504 504
	9.3.4 Equilibration time	507
	9.4 The NVT ensemble: constant temperature and constant strain	507
	9.4.1 Velocity rescaling	508
	9.4.2 Gauss' principle of least constraint and the isokinetic thermostat	509
	9.4.3 The Langevin thermostat	511
	9.4.4 The Nose-Hoover (NH) thermostat 9.4.5 Liouville's equation for non-Hamiltonian systems	515
	9.4.6 An alternative derivation of the NH thermostat	517
	9.4.7 Integrating the NVT ensemble	518
	9.5 The finite strain N σ E ensemble: applying stress	520
	9.5.1 A canonical transformation of variables	521
	9.5.2 The hydrostatic stress state	527 528
	9.5.5 The Partinello–Kanman (PK) approximation 9.5.4 The zero-temperature limit: applying stress in molecular statics	528 530
	9.5.5 The kinetic energy of the cell	533
	9.6 The N σ T ensemble: applying stress at a constant temperature	533
	Further reading	534
	Exercises	534
	Part IV Multiscale methods	537
	10 What is multiscale modeling?	539
	10.1 Multiscale modeling: what is in a name?	539
	10.2 Sequential multiscale models	541
	10.3 Concurrent multiscale models	543
	10.3.1 Hierarchical methods	544
	10.3.2 Partitioned-domain methods	546
	10.4 Spanning time scales	54/
	Further reading	549
	11 Atomistic constitutive relations for multilattice crystals	550
	11.1 Statistical mechanics of systems in metastable equilibrium	554
	11.1.1 Restricted ensembles	224 556
	11.1.2 Troperties of a metastable state from a restricted calorinear ensemble	558
	11.2.1 Multilattice crystals and mean positions	558
	11.2.2 Cauchy–Born kinematics	559
	11.2.3 Centrosymmetric crystals and the Cauchy-Born rule	561
	11.2.4 Extensions and failures of the Cauchy–Born rule	562

xi	Contents			
	11.3 Finite temperature constitutive relations for multilattice crystals	563		
	11.3.1 Periodic supercell of a multilattice crystal	563		
	11.3.2 Helmholtz free energy density of a multilattice crystal	566		
	11.3.3 Determination of the reference configuration	567		
	11.3.4 Uniform deformation and the macroscopic stress tensor	570		
	11.3.5 Elasticity tensor	575		
	11.4 Quasiharmonic approximation	578		
	11.4.1 Quasiharmonic Helmholtz free energy	578		
	11.4.2 Determination of the quasiharmonic reference configuration	582		
	11.4.3 Quasiharmonic stress and elasticity tensors	586		
	11.4.4 Strict harmonic approximation	590		
	11.5 Zero-temperature constitutive relations	592		
	11.5.1 General expressions for the stress and elasticity tensors	592 502		
	11.5.2 Stress and elasticity tensors for some specific interatomic models	505		
	Further reading	500		
	Further reading	598		
	Exercises	598		
	12 Atomistic—continuum coupling: static methods	601		
	12.1 Finite elements and the Cauchy–Born rule	601		
	12.2 The essential components of a coupled model	604		
	12.3 Energy-based formulations	608		
	12.3.1 Total energy functional	608		
	12.3.2 The quasi-continuum (QC) method	610		
	12.3.3 The coupling of length scales (CLS) method	613		
	12.3.4 The bridging domain (BD) method	614		
	12.3.5 The bridging scale method (BSM)	616		
	12.3.6 CACM: iterative minimization of two energy functionals	01/ 619		
	12.4. Chart former in annual loss that the la	(20)		
	12.4 Chost forces in energy-based methods	620 622		
	12.4.1 A one-dimensional Lennard-Jones chain of atoms	623		
	12.4.2 A continuum constitutive law for the Definite-softes chain	623		
	12.4.4 Ghost forces in the cluster-based guasicontinuum (COC-E)	627		
	12.4.5 Ghost force correction methods	630		
	12.5 Force-based formulations	631		
	12.5.1 Forces without an energy functional	631		
	12.5.2 FEAt and CADD	633		
	12.5.3 The hybrid simulation method (HSM)	634		
	12.5.4 The atomistic-to-continuum (AtC) method	634		
	12.5.5 Cluster-based quasicontinuum (CQC-F)	636		
	12.5.6 Spurious forces in force-based methods	636		
	12.6 Implementation and use of the static QC method	638		
	12.6.1 A simple example: shearing a twin boundary	638		
	12.6.2 Setting up the model	640		
	12.0.3 Solution procedure	642		
	12.0.4 Twin boundary inigration	044 645		
	12.0.9 Automate model adaption	045		

xii	Contents	
	12.7 Quantitative comparison between the methods	647
	12.7.1 The test problem	648
	12.7.2 Comparing the accuracy of multiscale methods	650
	12.7.3 Quantifying the speed of multiscale methods	654
	12.7.4 Summary of the relative accuracy and speed of multiscale methods	655
	Exercises	656
	13 Atomistic—continuum coupling: finite temperature and dynamics	658
	13.1 Dynamic finite elements	659
	13.2 Equilibrium finite temperature multiscale methods	661
	13.2.1 Effective Hamiltonian for the atomistic region	662
	13.2.2 Finite temperature QC framework	667
	13.2.3 Hot-QC-static: atomistic dynamics embedded in a static continuum	670
	13.2.4 Hot-QC-dynamic: atomistic and continuum dynamics	672
	12.2. News sufficiency multiples in the de	(77
	13.3 1 A païve starting point	678
	13.3.2 Wave reflections	678
	13.3.3 Generalized Langevin equations	683
	13.3.4 Damping bands	687
	13.4 Concluding remarks	689
	Exercises	689
	Appendix A Mathematical representation of interatomic potentials	690
	A.1 Interatomic distances and invariance	691
	A.2 Distance geometry: constraints between interatomic distances	693
	A.3 Continuously differentiable extensions of $\breve{V}^{\text{int}}(s)$	696
	A.4 Alternative potential energy extensions and the effect on atomic forces	698
	References	702
	Index	746
	110000	, 10

Preface

Studying *materials* can mean studying almost anything, since all of the physical, tangible world is necessarily made of *something*. Normally, we think of studying materials in the sense of materials science and engineering – an endeavor to understand the properties of natural and man-made materials and to improve or exploit them in some way – but even this includes broad and disparate goals. One can spend a lifetime studying the strength and toughness of steel, for example, and never once concern oneself with its magnetic or electric properties. At the same time, *modeling* in science can mean many things to many people, ranging from computer simulation to analytical effective theories to abstract mathematics. To combine these two terms "modeling materials" as the title of a single book, then, is surely to invite disaster. How could it be possible to cover all the topics that the product *modeling* × *materials* implies? Although this book remains true to its title, it will be necessary to pick and choose our topics so as to have a manageable scope. To start with, then, we have to decide: what models and what materials do we want to discuss?

As far as *modeling* goes, we must first recognize the fact that materials exhibit phenomena on a broad range of spatial and temporal scales that combine together to dictate the response of a material. These phenomena range from the bonding of individual atoms governed by quantum mechanics to macroscopic deformation processes described by continuum mechanics. Various aspects of materials behavior and modeling, which tend to focus on specific phenomena at a given scale, have traditionally been treated by different disciplines in science and engineering. The great disparity in scales and the interdisciplinary nature of the field are what makes modeling materials both challenging and exciting. It is unlikely that any one researcher has sufficient background in engineering, physics, materials science and mathematics to understand materials modeling at every length and time scale. Furthermore, there is increased awareness that materials must be understood, not *only* by rigorous treatment of phenomena at each of these scales alone, but rather through consideration of the *interactions* between these scales. This is the paradigm of *multiscale modeling* that will also be a persistent theme throughout the book.

Recognizing the need to integrate models from different disciplines creates problems of nomenclature, notation and jargon. While we all strive to make our research specialties clear and accessible, it is a necessary part of scientific discourse to create and use specific terms and notation. An unintended consequence of this is the creation of barriers to interdisciplinary understanding. One of our goals is to try to facilitate this understanding by providing a unified presentation of the fundamentals, using a common nomenclature, notation and language that will be accessible to people across disciplines. The result is this book on *Modeling Materials* (MM) and our companion book on *Continuum Mechanics and Thermodynamics* (CMT) [TME12].

xiii

xiv

Preface

The subject matter in MM is divided into four parts. Part I covers continuum mechanics and thermodynamics concepts that serve as the basis for the rest of the book. The description of continuum mechanics and thermodynamics is brief and is only meant to make MM a stand-alone book. The reader is referred to CMT for a far deeper view of these subjects consistent with the rest of MM. Part II covers atomistics, discussing the basic structure and symmetries of crystalline materials, quantum mechanics and more approximate empirical models for describing bonding in materials, and molecular statics – a computational approach for studying static properties of materials at the atomic scale. Part III focuses on the atomistic foundations of continuum concepts. Here, using ideas from statistical mechanics, connections are forged between the discrete world of atoms - described by atomic positions, velocities and forces - and continuum concepts such as fields of stress and temperature. Finally, the subject of molecular dynamics (MD) is presented. We treat MD as a computational method for studying dynamical properties of materials at the atomic scale subject to continuum-level constraints, so it is yet another unique connection between the atomistic and continuum views. Part IV on multiscale methods describes a class of computational methods that attempt to model material response by simultaneously describing its behavior on multiple spatial and temporal scales. This final part of the book draws together and unifies many of the concepts presented earlier and shows how these can be integrated into a single modeling paradigm.

By bringing together this unusual combination of topics, we provide a treatment that is uniquely different from other books in the field. First, our focus is on a critical analysis and understanding of the fundamental assumptions that underpin these methods and that are often taken for granted in other treatments. We believe that this focus on fundamentals is essential for anyone seeking to combine different theories in a multiscale setting. Secondly, some of the topics herein are often treated from the perspective of the gaseous or liquid states. Here, our emphasis is on solids, and this changes the presentation in important ways. For example, in statistical mechanics we comprehensively discuss the subject of the stress tensor (not just pressure) and the concept of a restricted ensemble for metastable systems. Similarly, we talk at length about constant stress simulations in MD and how to correctly interpret them in a setting of finite deformation beyond that of simple hydrostatic compression. Third, while covering this broad range of topics we strive to regularly make connections between the atomistic, statistical and continuum worldviews. Finally, we have tried to create a healthy balance between fundamental theory and practical "how to." For example, we present, at length, the practical implementation of such topics as density functional theory, empirical atomistic potentials, molecular statics and dynamics, and multiscale partitioned-domain methods. It is our hope that someone with basic computer programming skills will be able to use this book to implement any of these methods, or at least to better understand an implementation in a pre-existing code.

Although the modeling methods we describe are, in principle, applicable to any material, we focus our scope of materials and properties on those that we, the authors, know best. The answer to "What materials?" then is crystalline solids and their thermomechanical (as opposed to electrical, optical or chemical) properties. For the most part, these serve as examples to illustrate the application and usefulness of the modeling methods that we

Cambridge University Press & Assessment 978-0-521-85698-0 — Modeling Materials Continuum, Atomistic and Multiscale Techniques Ellad B. Tadmor , Ronald E. Miller Frontmatter <u>More Information</u>

xv

Preface

describe, but we hope that the reader will also learn something new regarding the materials themselves along the way.

Even starting from this narrow mandate we have already failed, to some degree, in our goal of putting all the fundamentals in one place. This is because the binding of these subjects into a single volume becomes unwieldy if we wish to maintain the level of detail that we feel is necessary. To make room in this book, we sacrificed coverage of continuum mechanics, leaving only a concise summary in Chapter 2 of the key results needed to make contact with the rest of the topics. CMT [TME12], the companion volume to this one, provides the full details of the continuum mechanics and thermodynamics that we believe to be fundamental to materials modeling.

Both books, MM and CMT, are addressed to graduate students and researchers in chemistry, engineering, materials science, mathematics, mechanics and physics. The interdisciplinary nature of materials modeling means that researchers from all of these fields have contributed to and continue to be engaged in this field. The motivation for these books came from our own frustration, and that of ours students, as we tried to acquire the breadth of knowledge necessary to do research in this highly interdisciplinary field. We have made every effort to eliminate this frustration in the future by making our writing accessible to all readers with an undergraduate education in an engineering or scientific discipline. The writing is self-contained, introducing all of the necessary basic concepts and building up from there. Of course, by necessity that means that our coverage of the different topics is limited and skewed to our primary focus on materials modeling. At the end of each chapter, we recommend sources for further reading for readers interested in expanding their understanding in a particular direction.

Acknowledgments

One of our favorite teachers when we were graduate students at Brown University, Ben Freund, has said that writing a book is like giving birth. The process is long and painful, it involves a lot of screaming, but in the end something has to come out. We find this analogy so apt that we feel compelled to extend it: in some cases, you are blessed with twins.¹ As we initially conceived it, our goal was to have everything in a single volume. But as time went on, and what we were "carrying" grew bigger and bigger, it became clear that it really needed to be two separate books.

Since the book has been split in two, we choose to express our gratitude twice, once in each book, to everyone who has helped us with the project as a whole. Surely, thanking everyone twice is the least we can do. Some people helped in multiple ways, and so their names appear even more often. Our greatest debt goes to our wives, Jennifer and Granda, and to our children: Maya, Lea, Persephone and Max. They have suffered more than anyone during the long course of this project, as their preoccupied husbands and fathers stole too much time from so many other things. They need to be thanked for such a long list of reasons that we would likely have to split these two books into three if we were thorough with the details. Thanks, all of you, for your patience and support. We must also thank our own parents Zehev and Ciporah and Don and Linda for giving us the impression – perhaps mistaken – that everybody will appreciate what we have to say as much as they do.

The writing of a book as diverse as this one is really a collaborative effort with so many people whose names do not appear on the cover. These include students in courses, colleagues in the corridors and offices of our universities and unlucky friends cornered at conferences. The list of people that offered a little piece of advice here, a correction there, or a word of encouragement somewhere else is indeed too long to include, but there are a few people in particular that deserve special mention.

Some colleagues generously did calculations for us, verified results, or provided other contributions from their own work. We thank Quiying Chen at the NRC Institute for Aerospace Research in Ottawa for his time in calculating UBER curves with DFT. Tsveta Sendova, a postdoctoral fellow at the University of Minnesota, coded and ran the simulations for the two-dimensional NEB example we present. Another postdoctoral fellow at the University of Minnesota, woo Kyun Kim, performed the indentation and thermal expansion simulations used to illustrate the hot-QC method. We thank Yuri Mishin (George Mason

¹ This analogy is made with the utmost respect for our wives, and anyone else who *actually has* given birth. Assuming labor has units of power, then we feel that the integral of this power over the very different timescales of the two processes should yield quantities of work that are on the same order of magnitude. Our wives disagree, no doubt in part because some of the power consumed by book-writing indirectly comes from them, whereas our contribution to childbirth amounts mainly to sending around e-mail photos of the newborn children.

xvii

Acknowledgments

University) for providing figures, and Christoph Ortner (Oxford University) for providing many insights into the problem of full versus sequential minimization of multivariate functions, including the example we provide in the book. The hot-QC project has greatly benefited from the work of Laurent Dupuy (SEA Saclay) and Frederic Legoll (École Nationale des Ponts et Chaussées). Their help in preparing a journal paper on the subject has also proven extremely useful in preparing the chapter on dynamic multiscale methods. Furio Ercolessi must be thanked in general for his fantastic web-based notes on so many important subjects discussed herein, and specifically for providing us with his molecular dynamics code as a teaching tool to provide with this book.

Other colleagues patiently taught us the many subjects in this book about which we are decidedly *not* experts. Dong Qian at the University of Cincinnati and Michael Parks at Sandia National Laboratories very patiently and repeatedly explained the nuances of various multiscale methods to us. Similarly, we would like to thank Catalin Picu at the Rensselaer Polytechnic Institute for explaining CACM, and Leo Shilkrot for his frank conversations about CADD and the BSM. Noam Bernstein at the Navy Research Laboratories was invaluable in explaining DFT in a way that an engineer could understand, and Peter Watson at Carleton University was instrumental in our eventual understanding of quantum mechanics. Roger Fosdick University of Minnesota discussed, at length, many topics related to continuum mechanics including tensor notation, material frame-indifference, Reynolds transport theorem and the principle of action and reaction. He also took the time to read and comment on our take on material frame-indifference.

We are especially indebted to those colleagues that were willing to take the time to carefully read and comment on drafts of various sections of the book - a thankless and delicate task. James Sethna (Cornell University) and Dionisios Margetis (University of Maryland) read and commented on the statistical mechanics chapter. Noam Bernstein (Navy Research Laboratories) must be thanked more than once for reading and commenting on both the quantum mechanics chapter and the sections on cluster expansions. Nikhil Admal, a graduate student working with Ellad at the University of Minnesota, contributed significantly to our understanding of stress and read and commented on the continuum mechanics chapter, Marcel Arndt helped by translating an important paper on stress by Walter Noll from German to English and worked with Ellad on developing algorithms for lattice calculations, while Gang Lu at the California State University (Northridge) set us straight on several points about density functional theory. Ryan Elliott, our coauthor of the companion book to this one, must also be thanked countless times for his careful reading of quantum mechanics and his many helpful suggestions and discussions. Other patient readers to whom we say "thank you" include Mitch Luskin from the University of Minnesota (numerical analysis of multiscale methods and quantum mechanics), Bill Curtin from Brown University (static multiscale methods), Dick James from the University of Minnesota (restricted ensembles and the definition of stress) and Leonid Berlyand from Pennsylvania State University (thermodynamics).

There are a great many colleagues that were willing to talk to us at length about various subjects in this book. We hope that we did not overstay our welcome in their offices too often, and that they do not sigh too deeply anymore when they see a message from us in their inbox. Most importantly, we thank them very much for their time. In addition to

xviii

Acknowledgments

those already mentioned above, we thank David Rodney (Institut National Polytechnique Grenoble), Perry Leo and Tom Shield (University of Minnesota), Miles Rubin and Eli Altus (Technion), Joel Lebowitz, Sheldon Goldstein and Michael Kiessling (Rutgers),² and Andy Ruina (Cornell University). We would also be remiss if we did not take the time to thank Art Voter (Los Alamos National Laboratory), John Moriarty (Lawrence Livermore National Laboratory) and Mike Baskes (Sandia National Laboratory) for many insightful discussions and suggestions of valuable references.

There are some things in these books that are so far outside our area of expertise that we have even had to look beyond the offices of professors and researchers. Elissa Gutterman, an expert in linguistics, provided phonetic pronunciation of French and German names. As neither of us is an experimentalist, our brief foray into pocket watch "testing" would not have been very successful without the help of Steve Truttman and Stan Conley in the structures laboratories at Carleton University. The story of our cover images involves so many people, it deserves its own paragraph.

As the reader will see in the introduction to both books, we are fond of the symbolic connection between pocket watches and the topics we discuss herein. There are many beautiful images of pocket watches out there, but obtaining one of sufficient resolution, and getting permission to use it, is surprisingly difficult. As such, we owe a great debt to Mr. Hans Holzach, a watchmaker and amateur photographer at Beyer Chronometrie AG in Zurich. Not only did he generously agree to let us use his images, he took over the entire enterprise of retaking the photographs when we found out that his images did not have sufficient resolution! This required Hans to coordinate with many people that we also thank for helping make the strikingly beautiful cover images possible. These include the photographer, Dany Schulthess (www.fotos.ch), Mr. René Beyer, the owner of Beyer Chronometrie AG in Zurich, who compensated the photographer and allowed photographs to be taken at his shop, and also to Dr. Randall E. Morris, the owner of the pocket watch, who escorted it from California to Switzerland (!) in time for the photo shoot. The fact that total strangers would go to such lengths in response to an unsolicited e-mail contact is a testament to their kind spirits and, no doubt, to their proud love of the beauty of pocket watches.

We cannot forget our students. Many continue to teach us things every day just by bringing us their questions and ideas. Others were directly used as guinea pigs with early drafts of parts of this book.³ Ellad would like to thank his graduate students and post-doctoral fellows over the last five years who have been fighting with this book for attention; specifically Nikhil Admal, Yera Hakobian, Hezi Hizkiahu, Dan Karls, Woo Kyun Kim, Leonid Kucherov, Amit Singh, Tsvetanka Sendova, Valeriu Smiricinschi, Slava Sorkin and Steve Whalen. Ron would likewise like to thank Ishraq Shabib, Behrouz Shiari and Denis Saraev, whose work helped shape his ideas about atomistic modeling. Harley Johnson and his 2008–2009 graduate class at the University of Illinois (Urbana-Champaign) used the book extensively and provided great feedback to improve the manuscript, as did Bill

² Ellad would particularly like to thank the Rutgers trio for letting him join them on one of their lunches to discuss the foundations of statistical mechanics – a topic which is apparently standard lunch fare for them along with the foundations of guantum mechanics.

³ Test subjects were always treated humanely and no students were harmed during the preparation of this book.

xix

Acknowledgments

Curtin's class at Brown University in 2009–2010. The 2009 and 2010 classes of Ron's "Microstructure and properties of engineering materials" class caught many initial errors in the chapters on crystal structures and molecular statics and dynamics. Some students of Ellad's continuum mechanics course are especially noted for their significant contributions: Yilmaz Bayazit (2008), Pietro Ferrero (2009), Zhuang Houlong (2008), Jenny Hwang (2009), Karl Johnson (2008), Dan Karls (2008), Minsu Kim (2009), Nathan Nasgovitz (2008), Yintao Song (2008) and Chonglin Zhang (2008).

Of course, we should also thank our own teachers. Course notes from Michael Ortiz, Janet Blume, Jerry Weiner and Tom Shield were invaluable to us in preparing our own notes and this book. Thanks also to our former advisors at Brown University, Michael Ortiz and Rob Phillips (both currently at Caltech), whose irresistible enthusiasm, curiosity and encouragement pulled us down this most rewarding of scientific paths.

We note that many figures in this book were prepared with the drawing package Asymptote (see http://asymptote.sourceforge.net/), an open-source effort that we think deserves to be promoted here. Finally, we thank our editor Simon Capelin and the entire team at Cambridge, for their advice, assistance and truly astounding patience.

Notation

In a book covering such a broad range of topics, notation is a nightmare. We have attempted, as much as possible, to use the most common and familiar notation from within each field as long as this did not lead to confusion. However, this does mean that the occasional symbol will serve multiple purposes, as the tables below will help to clarify. To keep the amount of notation to a minimum, we generally prefer to append qualifiers to symbols rather than introducing new symbols. For example, f is force, which if relevant can be divided into internal, f^{int} , and external, f^{ext} , parts.

We use the following general conventions:

- Descriptive qualifiers generally appear as superscripts and are typeset using a Roman (as opposed to Greek) nonitalic font.
- The weight and style of the font used to render a variable indicates its type. Scalar variables are denoted using an italic font. For example, T is temperature. Array variables are denoted using a sans serif font, such as A for the matrix A. Vectors and tensors (in the technical sense of the word) are rendered in a boldface font. For example, σ is the stress tensor.
- Variables often have subscript and superscript indices. Indices referring to the components of a matrix, vector or tensor appear as subscripts in italic Roman font. For example, v_i is the *i*th component of the velocity vector. Superscripts are used as counters of variables. For example, F^e is the deformation gradient in element e. Superscripts referring to atoms are distinguished by using a Greek letter. For example, the velocity of atom α is denoted v^α. Iteration counters appear in parentheses, for example f⁽ⁱ⁾ is the force in iteration *i*.
- The Einstein summation convention is followed on repeated indices (e.g. $v_i v_i = v_1^2 + v_2^2 + v_3^2$), unless otherwise clear from the context. (See Section 2.1.1 for more details.)
- One special type of superscript concerns the denotation of Bravais lattices and crystals. For example, the position vector *R*^[ℓλ] denotes the λth basis atom associated with Bravais lattice site ℓ. (See Section 3.6 for details.)
- A subscript is used to refer to multiple equations on a single line, for example "Eqn. $(2.66)_2$ " refers to the second equation in Eqn. (2.66) (" $a_i(x, t) \equiv ...$ ").
- Important equations are emphasized by shading.

Below, we describe the main notation and symbols used in the book, and indicate the page on which each is first defined. We also include a handy list of fundamental constants and unit conversions at the end of this section.

xxi

© in this web service Cambridge University Press & Assessment

xxii

Notation

Mathematical notation

Notation	Description	Page
=	equal to by definition	28
:=	variable on the left is assigned the value on the right	24
\forall	for all	28
\in	contained in	28
iff	if and only if	28
O(f)	terms proportional to order f	188
O(n)	orthogonal group of degree n	31
SO(n)	proper orthogonal (special orthogonal) group of degree n	31
\mathbb{R}	set of all real numbers	26
\mathbb{R}^{n}	real coordinate space (<i>n</i> -tuples of real numbers)	27
•	absolute value of a real number	28
 •	norm of a vector	28
$\langle ullet, ullet \rangle$	inner product of two vectors	28
$\langle \bullet \bullet \rangle$	inner product of two vectors (bra-ket notation)	161
$\langle \bullet \bullet \bullet \rangle$	bra-operator-ket inner product	163
[uvw]	direction in a crystal $(u\boldsymbol{a} + v\boldsymbol{b} + w\boldsymbol{c})$	125
$\langle uvw \rangle$	family of crystal directions	125
(hkl)	Miller indices denoting a crystallographic plane	150
$\{hkl\}$	family of crystallographic planes	151
$\{M \mid C\}$	a set of members M such that conditions C are satisfied	245
•	time average of a quantity	388
$\langle \bullet \rangle$	phase average of a quantity	391
$\langle \bullet; f \rangle$	phase average of a quantity relative to distribution function f	391
$\Pr(O)$	probability of outcome O	395
$\operatorname{Var}(A)$	variance of A: $\operatorname{Var}(A) = \langle A^2 \rangle - (\langle A \rangle)^2$	396
$\operatorname{Cov}(A, B)$	covariance of A and B: $\operatorname{Cov}(A, B) = \langle AB \rangle - \langle A \rangle \langle B \rangle$	461
$\operatorname{Cov}_{\chi}(A,B)$	covariance of A and B in a restricted ensemble	577
$\widehat{f}(oldsymbol{k})$	Fourier transform of $f(\boldsymbol{x})$	166
f(s)	Laplace transform of a $f(t)$	684
●*	complex conjugate	161
$oldsymbol{A}^T$	transpose of a matrix or second-order tensor: $[\mathbf{A}^T]_{ii} = A_{ii}$	25
A^{-T}	transpose of the inverse of \mathbf{A} : $\mathbf{A}^{-T} \equiv (\mathbf{A}^{-1})^{T}$	35
$m{a}\cdotm{b}$	dot product (vectors): $\boldsymbol{a} \cdot \boldsymbol{b} = a_i b_i$	28
$oldsymbol{a} imes oldsymbol{b}$	cross product (vectors): $[\boldsymbol{a} \times \boldsymbol{b}]_k = \epsilon_{ijk} a_i b_j$	30
$oldsymbol{a}\otimes oldsymbol{b}$	tensor product (vectors): $[\boldsymbol{a} \otimes \boldsymbol{b}]_{ij} = a_i b_j$	33
$\boldsymbol{A}:\boldsymbol{B}$	contraction (second-order tensors): $\boldsymbol{A} : \boldsymbol{B} = A_{ij}B_{ij}$	36
$m{A}\cdot\cdotm{B}$	transposed contraction (second-order tensors): $\mathbf{A} \cdot \mathbf{B} = A_{ij}B_{ji}$	36
$\lambda^{\boldsymbol{A}}_{\alpha}, \boldsymbol{\Lambda}^{\boldsymbol{A}}_{\alpha}$	α th eigenvalue and eigenvector of the second-order tensor A	38
$I_k^{\mathbf{A}}$	kth principal invariant of the second-order tensor A	38
$\det A$	determinant of a matrix or a second-order tensor	26
$\operatorname{tr} \boldsymbol{A}$	trace of a matrix or a second-order tensor: tr $\boldsymbol{A} = A_{ii}$	25

Cambridge University Press & Assessment 978-0-521-85698-0 — Modeling Materials Continuum, Atomistic and Multiscale Techniques Ellad B. Tadmor , Ronald E. Miller Frontmatter <u>More Information</u>

xxiii		Notation	
	-		
	$\nabla \bullet$, grad \bullet	gradient of a tensor (deformed configuration)	40
	$\nabla_0 \bullet$, Grad •	gradient of a tensor (reference configuration)	45
	curl •	curl of a tensor (deformed configuration)	41
	Curl •	curl of a tensor (reference configuration)	45
	div●	divergence of a tensor (deformed configuration)	41
	Div ●	divergence of a tensor (reference configuration)	45
	$ abla^2ullet$	Laplacian of a tensor (deformed configuration)	41
	d	inexact differential	81
	$oldsymbol{r}^{lpha\dot{eta}}$	position vector to closest periodic image of β to atom α	326
	$\stackrel{\diamond}{lpha}, \stackrel{\#}{lpha}$	unit cell and sublattice of atom α in a multilattice crystal	564

General symbols – Greek

Symbol	Description	Page
Г	phase space	382
Γ , Γ _i	set of extensive kinematic state variables	63
$\mathbf{\Gamma}_i$	wave vector of the <i>i</i> th DFT plane wave basis function	211
$\boldsymbol{\gamma}, \gamma_i$	set of intensive state variables work conjugate with Γ	78
γ	damping coefficient	511
$\gamma_{ m s}$	surface energy	340
$\gamma_{ m GB}$	grain boundary energy	346
$\gamma_{ m SF}$	stacking fault energy	357
δ_{ij}	Kronecker delta	25
ϵ	energy of an electron	164
ϵ, ϵ_{ij}	small strain tensor	49
ϵ_{ijk}	permutation symbol	26
ζ^{lpha}_i	fractional coordinates of basis atom α	142
$\kappa^{lphaeta\gamma\delta}$	scalar atomistic stiffness term relating bonds $\alpha \! - \! \beta$ and $\gamma \! - \! \delta$	297
Λ	de Broglie thermal wavelength	241
Λ_i	projection operator	162
λ	Lamé constant	105
λ	plane wave wavelength	164
μ	shear modulus (solid)	105
$\mu(m)$	mth moment of a function	230
ν	Poisson's ratio	105
$ u_e$	number of atoms associated with element e in QC	612
П	total potential energy of a system and the applied loads	107
$\mathbf{\Pi}^{lpha}, \Pi_{i}^{lpha}$	pull-back momentum of atom α	452
ρ	mass density (deformed configuration)	52
ρ	electron density	188
$ ho_0$	mass density (reference configuration)	52
$ ho^{ m pt}$	pointwise (microscopic) mass density field	468

xxiv		Notation	
	$ ho^lpha$	total electron density at atom α in a pair functional	263
	$\Sigma(E; \Delta E)$	hypershell in phase space with energy E and thickness ΔE	404
	$\boldsymbol{\sigma},\sigma_{ij}$	Cauchy stress tensor	56
	$oldsymbol{\sigma}^{ ext{inst}}, \sigma^{ ext{inst}}_{ij}$	instantaneous atomic-level stress	457
	$oldsymbol{\sigma}^{ ext{pt}}, \sigma^{ ext{pt}}_{ij}$	pointwise (microscopic) Cauchy stress tensor	470
	$oldsymbol{\sigma}^{\mathrm{pt,K}}, \sigma^{\mathrm{pt,K}}_{ij}$	kinetic part of the pointwise (microscopic) Cauchy stress	471
	$oldsymbol{\sigma}^{\mathrm{pt,V}}, \sigma_{ij}^{\mathrm{pt,V}}$	potential part of the pointwise (microscopic) Cauchy stress	471
	$oldsymbol{arphi},arphi_i$	deformation mapping	43
	$\phi(r)$	pair potential as a function of distance r	251
	arphi	electron wave basis function	173
	$arphi^{lphaeta}$	scalar magnitude of force on atom α due to presence of atom β	291
	χ	general, time-dependent electronic wave function	163
	χ	characteristic function in restricted ensemble	554
	ψ	specific Helmholtz free energy	95
	ψ	general, time-independent electronic wave function	165
	$\psi^{ m sp}$	single-particle, time-independent electronic wave function	194
	Ω	volume of a periodic simulation cell in a DFT simulation	210
	Ω_0	nonprimitive unit cell volume in reference configuration	124
	$\widehat{\Omega}$	volume of the first Brillouin zone	208
	$\widehat{\Omega}_0$	primitive unit cell volume in reference configuration	122
	$\Omega(E; \Delta E)$	volume of hypershell $\Sigma(E; \Delta E)$ in phase space	404
	ω	plane wave frequency	164

General symbols – Roman

Symbol	Description	Page
$\overline{\mathcal{A}}$	macroscopic observable associated with phase function $A(q, p)$	387
$A(\boldsymbol{q},\boldsymbol{p})$	phase function associated with macroscopic observable \mathcal{A}	387
$oldsymbol{A}_1,oldsymbol{A}_2,oldsymbol{A}_3$	reference nonprimitive lattice vectors	123
$\hat{m{A}}_1, \hat{m{A}}_2, \hat{m{A}}_3$	reference primitive lattice vectors	120
\boldsymbol{a}, a_i	acceleration vector	50
$oldsymbol{a}_1, oldsymbol{a}_2, oldsymbol{a}_3$	nonprimitive lattice vector (deformed configuration)	561
\mathcal{B}	the first Brillouin zone	212
В	bulk modulus	112
$B(\boldsymbol{x}; \boldsymbol{u}, \boldsymbol{v})$	bond function at x due to the spatially averaged bond $u-v$	479
$oldsymbol{B}_1,oldsymbol{B}_2,oldsymbol{B}_3$	reciprocal reference lattice vectors	147
\boldsymbol{B}, B_{ij}	left Cauchy-Green deformation tensor	47
BO	bond order	272
b , b _i	body force (spatial description)	55
b , b _i	Burgers vector	351
$oldsymbol{b}^{\mathrm{pt}}, b^{\mathrm{pt}}_i$	pointwise (microscopic) body force field	470
C	the DFT simulation cell	210

XXV	_	Notation			
	a		(0)		
	C_v	molar heat capacity at constant volume	69		
	C, C_{IJ}	right Cauchy–Green deformation tensor	47		
	C, C_{IJKL}	referential elasticity tensor	101		
	c_v	specific heat capacity at constant volume	/0		
	c_I, c_{Ij}, c_{iI}	plane wave j or orbital i on atom α)	1/6		
	c, c_{ijkl}	spatial (or small strain) elasticity tensor	102		
	c , c _{<i>m n</i>}	elasticity matrix (in Voigt notation)	104		
	D(E)	density of states (statistical mechanics)	405		
	$D(\epsilon)$	electronic density of states	230		
	D_i^{α}	electronic density of states for orbital i on atom α	230		
	D, D_{iJkL}	mixed elasticity tensor	102		
	a, a_{ij}	rate of deformation tensor	50		
	C E	Vounc's modulus	08		
	E F (7)	found s modulus $(isolated)$ atom with atomic number Z	247		
	$E_{\rm free}(Z)$ $E \to E^0$	cohesive energy and equilibrium cohesive energy	247		
	$E_{\rm coh}, E_{\rm coh}$	Lagrangian strain tensor	48		
	E , <i>L</i> ₁ <i>J</i>	orthonormal basis vectors	+0 27		
	$oldsymbol{\mathcal{F}}^{ ext{ext}}$	total external force acting on a system	54		
	\mathbf{F} . $F_{i,T}$	deformation gradient	46		
	f	occupancy of an electronic orbital	208		
	$f(\boldsymbol{q},\boldsymbol{p};t)$	distribution function at point $(\boldsymbol{q}, \boldsymbol{p})$ in phase space at time t	391		
	$f_{\rm mc}(\boldsymbol{q},\boldsymbol{p};E)$	microcanonical (NVE) distribution function	407		
	$f_{\rm c}(\boldsymbol{q},\boldsymbol{p};T)$	canonical (NVT) distribution function	427		
	$oldsymbol{f}^lpha$, f^lpha_i	force on atom α	54		
	$oldsymbol{f}^{lphaeta}, f_i^{lphaeta}$	force on atom α due to the presence of atom β	289		
	$oldsymbol{f}^{\mathrm{int},lpha}, f^{\mathrm{int},lpha}_i$	internal force on atom α	289		
	$oldsymbol{f}^{\mathrm{ext},lpha}, f^{\mathrm{ext},lpha}_i$	external force on atom α	289		
	f	column matrix of finite element nodal forces	603		
	$oldsymbol{G}^lpha,G^lpha_i$	stochastic force on atom α	511		
	g	specific Gibbs free energy	96		
	g(r)	electron density function in a pair functional	264		
	${\cal H}$	Hamiltonian of a system	159		
	$oldsymbol{H},H_i$	angular momentum	58		
	\mathbf{H}_0	matrix of periodic cell vectors (reference configuration)	326		
	Ĥ	matrix of periodic cell vectors (deformed configuration)	326		
	H	matrix of reference primitive lattice vectors	120		
	Ι	identity tensor	34		
	I ,	identity matrix	25		
	J	Jacobian of the deformation gradient	46		
	ĸ	macroscopic (continuum) kinetic energy	68		
	ĸ	stiffness matrix or Hessian	312		
	\boldsymbol{k}	wave vector and Fourier space variable	146		

xxvi		Notation		
	L	Lagrangian function	158	
	L, L_i	linear momentum	54	
	L, L_i	vectors defining a periodic simulation cell (reference)	325	
	l, l_i	vectors defining a periodic simulation cell (deformed)	563	
	l, l_{ij}	spatial gradient of the velocity field	50	
	M	total mass of a system of particles	380	
	M _{cell}	mass of a unit cell	567	
	M	Conitional moment acting on a system	58 (())	
	IVI ····· ···· α	finite element mass matrix	660 54	
	m, m^{α}	mass, mass of atom α	54 224	
	\mathcal{N}	set of atoms forming the heighbor list to atom α	524	
	IN N	number of particles/atoms	54 142	
	\hat{N}	number of basis atoms in the minitive unit cell	142	
	$N_{\rm B}$	number of basis atoms in the primitive unit cell	140 562	
	Iv _{lat}	dimensionality of space	303 22	
	$n_{ m d} \mathcal{D}^{ m def}$	deformation nower	86	
	$\mathcal{P}^{\mathrm{ext}}$	external power	85	
	$\mathbf{P} = \mathbf{P}$	first Piola_Kirchhoff stress tensor	59	
	\mathbf{n}^{α} \mathfrak{n}^{α}	reference momentum of atom α	452	
	\mathbf{r} , \mathbf{r}_i	pressure (or hydrostatic stress)	57	
	$p n^{\alpha} n^{\alpha}$	momentum of atom α	54	
	p^{α}, p_{i}	center-of-mass momentum of atom α	380	
	\boldsymbol{p}_{rel} \boldsymbol{n}_i	momentum of an electron or atom	164	
	\mathbf{p} , p_i	generalized momenta in statistical mechanics	382	
	ΔQ	heat transferred to a system during a process	68	
	$\mathbf{Q}.\mathbf{Q}_{\alpha i}$	orthogonal transformation matrix	31	
	q, q_i	spatial heat flux vector	87	
	q_0, q_{0I}	reference heat flux vector	88	
	q, q_i	generalized positions in statistical mechanics	382	
	$ar{m{q}},ar{q}_i$	generalized mean positions in restricted ensemble	556	
	\mathcal{R}	rate of heat transfer	85	
	\boldsymbol{R}, R_{iJ}	finite rotation (polar decomposition)	47	
	$oldsymbol{R}^{[oldsymbol{\ell}\lambda]}$	reference position of the λ th basis atom of lattice site ℓ	141	
	\boldsymbol{R}, R_i	center of mass of a system of particles	380	
	$oldsymbol{R}^lpha,R_i^lpha$	reference position of atom α	242	
	r	spatial strength of a distributed heat source	87	
	r_0	reference strength of a distributed heat source	88	
	$oldsymbol{r}^lpha, r_i^lpha$	spatial position of atom α	54	
	$ar{m{r}}^lpha,ar{r}^lpha_i$	mean position of atom α in restricted ensemble	556	
	$oldsymbol{r}_{\mathrm{rel}}^lpha$	center-of-mass coordinates of atom α	380	
	S	electronic orbital overlap	225	
	S	entropy	73	
	\mathcal{S}^{λ}	set of all atoms belonging to sublattice λ in a multilattice	564	

xxvii	Notation			
	S^{I}	shape function for finite element node I	602	
	S_E	hypersurface of constant energy E in phase space	382	
	$oldsymbol{S},S_{IJ}$	second Piola-Kirchhoff stress tensor	60	
	s	specific entropy	88	
	\boldsymbol{s}, s_{ijkl}	spatial (or small strain) compliance tensor	103	
	$ar{m{s}}^{\lambda},ar{s}^{\lambda}_{i}$	shift vector of basis atom λ	560	
	T	instantaneous microscopic kinetic energy	158	
	$T^{\rm vib}$	microscopic (vibrational) kinetic energy	379	
	T^{e_1}	instantaneous kinetic energy of the electrons	190	
	·1 · T	instantaneous kinetic energy of the noninteracting electrons	192	
		temperature	65	
	1,1i + +	true traction (stress vector)	00 56	
	$\boldsymbol{\iota}, \iota_i$ $\boldsymbol{\bar{\tau}}, \boldsymbol{\bar{\tau}}$	true external traction (stress vector)	55	
	ι, ι_i	internal energy	55 68	
	U 14	notential energy of a quantum mechanical system	169	
	$U(\rho)$	embedding energy term in a pair functional	263	
	U(z)	unit step function (Heaviside function)	404	
	$U.U_{II}$	right stretch tensor	47	
	$\frac{u}{u}$	spatial specific internal energy	85	
	u_0	reference specific internal energy	88	
	u, u_i	displacement vector	48	
	$\widetilde{oldsymbol{u}},\widetilde{u}_i$	finite element approximation to the displacement field	602	
	u	column matrix of finite element nodal displacements	601	
	\mathcal{V}	potential energy of a classical system of particles	158	
	$\mathcal{V}^{\mathrm{int}}$	internal (interatomic) part of the potential energy	240	
	$\mathcal{V}^{\mathrm{ext}}$	total external part of the potential energy	240	
	$\mathcal{V}_{\mathrm{fld}}^{\mathrm{ext}}, \mathcal{V}_{\mathrm{con}}^{\mathrm{ext}}$	potential energy due to external fields and external contact	240	
	V_0	volume (reference configuration)	46	
	V	volume (deformed configuration)	46	
	V_0^{lpha}	volume of atom α (reference configuration)	457	
	V^{lpha}	volume of atom α (deformed configuration)	457	
	V_R	volume of region R in phase space	384	
	$oldsymbol{V}$, V_{ij}	left stretch tensor	47	
	v, v_i	velocity vector	50	
	$v^{\mathrm{pv}}, v^{\mathrm{r}}_i$	pointwise (microscopic) velocity field	468	
	$\boldsymbol{v}^{lpha}, v_{i}^{lpha}$	velocity of atom α	54 471	
	$oldsymbol{v}_{\mathrm{rel}}^{-}, oldsymbol{v}_{\mathrm{rel},i}^{-}$	velocity of atom α relative to center of mass	4/1	
	v A) <i>A</i> /	work performed on a system during a process	67	
	$\Delta v v$	virial of a system of particles	477	
	W	strain energy density function	96	
	$w(\mathbf{r}) \ \hat{w}(r)$	spatial averaging weighting function (general and spherical)	476	
	w_{i}, w_{i}	spin tensor	50	
	,	-r		

xxviii		Notation		
	-			
	$oldsymbol{w}^lpha$, w^lpha_i	displacement of atom α relative to its mean position	556	
	\boldsymbol{X}, X_I	position of a point in a continuum (reference configuration)	43	
	Х	column matrix of finite element nodal coordinates	601	
	\boldsymbol{x}, x_i	position of a point in a continuum (deformed configuration)	43	
	\boldsymbol{x}, x_i	position of an electron	156	
	Z	atomic number	176	
	Z	partition function	426	
	$Z^{\mathrm{K}}, Z^{\mathrm{V}}$	kinetic and potential parts of the partition function	427	
	$\hat{oldsymbol{Z}}^lpha$	position of basis atom α relative to the Bravais site	141	
	z	valence of an atom (or charge on an ion)	198	

Fundamental constants		
Avogadro's constant (N_A)	$6.0221 imes 10^{23} ext{ mol}^{-1}$	
Bohr radius (r_0)	0.52918 \AA	
Boltzmann's constant ($k_{\rm B}$)	$1.3807 \times 10^{-23} \text{ J/K}$	
	$8.6173 imes 10^{-5} \text{ eV/K}$	
charge of an electron (\tilde{e})	$1.6022 \times 10^{-19} \text{ C}$	
charge-squared per Coulomb constant		
$(ilde{e}^2/4\pi\epsilon_0\equiv e^2)$	$14.4 \text{ eV} \cdot \text{\AA}$	
mass of an electron $(m^{\rm el})$	$9.1094 imes 10^{-31} m kg$	
permittivity of free space (ϵ_0)	$8.8542 \times 10^{-12} \text{ C}^2/(\text{J}\cdot\text{m})$	
Planck's constant (<i>h</i>)	$6.6261\times 10^{-34}~{\rm J\cdot s}$	
	$4.1357\times 10^{-15}~{\rm eV\cdot s}$	
Planck's constant, reduced ($\hbar = h/2\pi$)	$1.0546\times 10^{-34}~{\rm J\cdot s}$	
	$6.5821 \times 10^{-16} \text{ eV} \cdot \text{s}$	
universal gas constant $(R_{\rm g})$	$8.3145 \; \mathrm{J/(K \cdot mol)}$	

Unit conversion		
1 fs	=	10^{-15} s (femto)
1 ps	=	10^{-12} s (pico)
1 ns	=	10^{-9} s (nano)
1 μs	=	10^{-6} s (micro)
1 ms	=	10^{-3} s (milli)
1 Å	=	$10^{-10} \text{ m} = 0.1 \text{ nm}$ (ångstrom)
1 eV	=	$1.60212 imes 10^{-19} \text{ J}$
1 eV/Å	=	$1.60212 \times 10^{-9} \; \mathrm{N} = 1.60212 \; \mathrm{nN}$
1 eV/\AA^2	=	$16.0212 \text{ J/m}^2 = 16.0212 \text{ N/m}$
$1 \text{ eV/\AA}^{2.5}$	=	$1.60212 imes 10^6 \text{ N/m}^{1.5} = 1.60212 \text{ MPa} \cdot \sqrt{\text{m}}$
1 eV/\AA^3	=	$1.60212 \times 10^{11} \text{ N/m}^2 = 160.212 \text{ GPa}$
1 amu	=	$1.66054 \times 10^{-27} \text{ kg} = 1.03646 \times 10^{-4} \text{eV} \cdot \text{ps}^2/\text{Å}^2$