
Chapter 1

The first look at a genome
Sequence statistics

� Genomes and genomic
sequences

� Probabilistic models of
sequences

� Statistical properties of
sequences

� Standard data formats and
databases

1.1 Genomic era, year zero

In 1995 a group of scientists led by Craig Venter, at The Institute for Genomic
Research (TIGR) in Maryland, published a landmark paper in the journal Sci-
ence. This paper reported the complete DNA sequence (the genome) of a free-
living organism, the bacterium Haemophilus influenzae (or H. influenzae, for
short). Up until that moment, only small viral genomes or small parts of other
genomes had been sequenced. The first viral genome sequence (that of phage
phiX174) was produced by Fred Sanger’s group in 1978, followed a few years
later by the sequence of human mitochondrial DNA by the same group. Sanger –
working in Cambridge, UK – was awarded two Nobel prizes, the first one in
1958 for developing protein sequencing techniques and the second one in 1980
for developing DNA sequencing techniques. A bacterial sequence, however,
is enormously larger than a viral one, making the H. influenzae paper a true
milestone. Given the order of magnitude increase in genome size that was se-
quenced by the group at TIGR, the genomic era can be said to have started in
1995.

A few months later the same group at TIGR published an analysis of the full
genome of another bacterium, Mycoplasma genitalium – a microbe responsible
for urethritis – and shortly thereafter the sequence of the first eukaryote, the fun-
gus, Saccharomyces cerevisiae (or S. cerevisiae, baker’s yeast) was published
by other groups. The method created by the TIGR group to obtain and assem-
ble genome sequences was itself a watershed; their method relied massively on
computer technology, but is beyond the topics discussed here. In the years that
followed, the number of complete genomes published grew enormously, and
the pace is still increasing. Before the start of the genomic era the collection
of publicly available DNA sequence data was distributed among scientists on
magnetic tape, then on CD, and finally over the internet. Now whole genomes
are available for fast download from a number of public databases.

After completing the sequencing of H. influenzae, Venter’s group moved to
what is the next phase of any genomic project: genome annotation. Annotation
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2 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Table 1.1 Some of the genomes discussed in this book, with their size and date of completion

Completion
Organism date Size Description

phage phiX174 1978 5,368 bp 1st viral genome
human mtDNA 1980 16,571 bp 1st organelle genome
lambda phage 1982 48,502 bp important virus model
HIV 1985 9,193 bp AIDS retrovirus
H. influenzae 1995 1,830 Kb 1st bacterial genome
M. genitalium 1995 580 Kb smallest bacterial genome
S. cerevisiae 1996 12.5 Mb 1st eukaryotic genome
E. coli K12 1997 4.6 Mb bacterial model organism
C. trachomatis 1998 1,042 Kb internal parasite of eukaryotes
D. melanogaster 2000 180 Mb fruit fly, model insect
A. thaliana 2000 125 Mb thale cress, model plant
H. sapiens 2001 3,000 Mb human
SARS 2003 29,751 bp coronavirus

involves various phases, and is never really complete. However, most sequenc-
ing projects perform at least two steps: a first (usually simpler) analysis, aimed
at identifying all of the main structures and characteristics of a genome; then
a second (often more complicated) phase, aimed at predicting the biological
function of these structures. The first chapters of this book present some of the
basic tools that allow us to perform sequence annotation. We leave the more
advanced topic of sequence assembly – the initial step of constructing the entire
genome sequence that must occur before any analyses begin – to more advanced
courses in bioinformatics.

Now that we have the complete genome sequences of various species, and
of various individuals of the same species, scientists can begin to make whole-
genome comparisons and analyze the differences between organisms. Of course
the completion of the draft human genome sequence in 2001 attracted headlines,
but this was just one of the many milestones of the genomic era, to be followed
soon thereafter by mouse, rat, dog, chimp, mosquito, and others. Table 1.1
lists some important model organisms as well as all of the organisms used in
examples throughout this book, with their completion dates and genome length
(the units of length will be defined in the next section). We should stress here
that there were many challenges in data storage, sharing, and management that
had to be solved before many of the new analyses we discuss could even be
considered.

In the rest of this chapter we begin our analysis of genomic data by repro-
ducing some of the original analyses of the early genome papers. We continue
this aim in the following chapters, providing the reader with the data, tools,
and concepts necessary to repeat these landmark analyses. Before we start our
first statistical examination of a complete genome; however, we will need to
summarize some key biological facts about how DNA is organized in cells and
the key statistical issues involved in the analysis of DNA.
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1 .2 THE ANATOMY OF A GENOME 3

It is also worth emphasizing at this point that genomic data include more
than just DNA sequence data. In 1995 a group of scientists led by Pat Brown
at Stanford University introduced a high-throughput technology that enabled
them to measure the level of activity of all the genes in an organism in a single
experiment. The analysis of the large datasets generated by these experiments
will be addressed in Chapter 9 and, partly, Chapter 10.

1.2 The anatomy of a genome

As a first definition, we can say that a genome is the set of all DNA contained
in a cell; shortly we will explain how some organisms actually have multiple
genomes in a single cell. The genome is formed by one or more long stretches
of DNA strung together into chromosomes. These chromosomes can be linear
or circular, and are faithfully replicated by a cell when it divides. The entire
complement of chromosomes in a cell contains the DNA necessary to synthesize
the proteins and other molecules needed to survive, as well as much of the
information necessary to finely regulate their synthesis. As we mentioned in
the Prologue, each protein is coded for by a specific gene – a stretch of DNA
containing the information necessary for that purpose.

DNA molecules consist of a chain of smaller molecules called nucleotides
that are distinct from each other only in a chemical element called a base.
For biochemical reasons, DNA sequences have an orientation: it is possi-
ble to distinguish a specific direction in which to read each chromosome
or gene. The cell’s enzymatic machinery reads the DNA from the 5′ to the
3′ end (these are chemical conventions of the nucleic acids that make up
DNA), which are often represented as the left and right end of the sequence,
respectively.

A DNA sequence can be either single-stranded or double-stranded. The
double-stranded nature of DNA is caused by the pairing of bases. When it
is double-stranded, the two strands have opposite direction and are comple-
mentary to one another. This complementarity means that for each A, C, G,
T in one strand, there is a T, G, C, or A, respectively, in the other strand.
Chromosomes are double-stranded – hence the “double helix” – and informa-
tion about a gene can be contained in either strand. Importantly, this pair-
ing introduces a complete redundancy in the encoding, which allows the
cell to reconstitute the entire genome from just one strand, which in turn
enables faithful replication. For simple convenience, however, we usually
just write out the single strand of DNA sequence we are interested in from
5′ to 3′.

Example 1.1
Sequence orientation and complementarity. The sequence 5′ –ATGCATGC – 3′

is complementary to the sequence 3′ – TACGTACG – 5′, which would often be
represented in print as simply ATGCATGC if no other directionality is provided.

We have seen that DNA molecules consist of chains of nucleotides, each
characterized by the base it contains. As a result, the letters of the DNA alphabet
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4 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

are variously called nucleotides (nt), bases, or base pairs (bp) for double stranded
DNA. The length of a DNA sequence can be measured in bases, or in kilobases
(1000 bp or Kb) or megabases (1 000 000 bp or Mb). The genomes present in
different organisms range in size from kilobases to megabases, and often have
very different biological attributes. Here we review some of the basic facts
about the most common genomes we will come across.

Prokaryotic genomes. As of the writing of this book, the Comprehensive
Microbial Resources website hosted at TIGR contains the sequences of 239
completed genomes: 217 from bacteria, and 21 from archaea (including the two
bacterial genomes from 1995 discussed above). This number is sure to have risen
since then. Eubacteria and archaea are the two major groups of prokaryotes:
free-living organisms without nuclei, a structure within cells that is used by
eukaryotes to house their genomes. Prokaryotic organisms generally have a
single, circular genome between 0.5 and 13 megabases long. M. genitalium has
the smallest prokaryotic genome known, with only 580 074 bases. In addition
to having relatively small genomes, prokaryotes also have rather simple genes
and genetic control sequences; in the next chapter we will explore these issues
in depth and see how they affect the identification of genes. Because of this
simplicity and their fundamental similarities to more complex genomes, we will
use many prokaryotic genomes as first examples for the analyses performed in
the book. We will focus in particular on H. influenzae, M. genitalium, and
Chlamydia trachomatis.

Viral genomes. Although viruses are not free-living organisms, an examina-
tion of viral genomes can be very informative. At least a thousand viral genomes
have been sequenced, starting from what is considered the “pre-genomic” era,
dating back to the late 1970s. Although these genomes are usually very short –
between 5 and 50 kilobases (Kb) – and contain very few genes, their sequencing
was a milestone for biology, and they enabled scientists to develop conceptual
tools that would become essential for the analysis of the genomes of larger,
free-living organisms. As they are an excellent model for practicing many of
the methods to be deployed later on larger genomes, we will use them to illus-
trate basic principles. Their analysis is also highly relevant for epidemiological
and clinical applications, as has been demonstrated in cases involving HIV and
SARS (see Chapters 6 and 7). Peculiarly, viral genomes can be either single-
or double-stranded, and either DNA- or RNA-based (we will learn more about
the molecule RNA in the next chapter). Because of their small size, we can
analyze a large number of viral genomes simultaneously on a laptop, a task
that would require a large cluster of machines in the case of longer genomic
sequences.

Eukaryotic genomes. The nuclear genome of eukaryotes is usually considered
the genome of such an organism (see the next paragraph for a description of
the organellar genomes contained in many eukaryotes). These nuclear genomes
can be much larger than prokaryotic genomes, ranging in size from 8 Mb for
some fungi to 670 gigabases (billions of bases or Gb) for some species of the
single-celled amoeba; humans come in at a middling 3.5 Gb. Because of the
large size of eukaryotic genomes, their sequencing is still a large effort usually
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1 .3 PROBABIL ISTIC MODELS OF GENOME SEQUENCES 5

undertaken by consortia of labs; these labs may divide the work up by each se-
quencing different linear chromosomes of the same genome. Currently we have
sequences representing more than 50 different eukaryotic organisms, including
various branches of the evolutionary tree: the fungus, S. cerevisiae (baker’s
yeast); the round worm, Caenorhabditis elegans; the zebrafish, Danio rerio;
important insects like the fruitfly, Drosophila melanogaster, and mosquito,
Anopheles gambiae; mammals such as humans, Homo sapiens, and mouse,
Mus musculus; and plants such as rice, Oryza sativa. The large size of such
genomes is generally due not to a larger number of genes, but rather to a
huge amount of repetitive “junk” DNA. It is estimated that only 5% of the
human genome is functional (e.g. codes for proteins), while at least 50% of
the genome is known to be formed by repetitive elements and parasitic DNA.
Added to the packaging problems associated with stuffing these large amounts
of DNA into each cell of a multicellular organism, most eukaryotes carry two
copies of their nuclear genome in each cell: one from each parent. We refer to
the single complement as the haploid set, as opposed to the diploid set of both
genomes.

Organellar genomes. In addition to these huge nuclear genomes, most eukary-
otes also carry one or more smaller genomes in each cell. These are contained
in cellular organelles, the most common of which are the mitochondrion and
the chloroplast. These organellar genomes are likely the remnants of symbi-
otic prokaryotic organisms that lived within eukaryotic cells. We now have the
genome sequence of the mitochondria and chloroplasts of at least 600 species,
often with multiple whole genomes of different individuals within a species.
These genomes are usually only tens of thousands of bases long, circular, and
contain a few essential genes. There can be hundreds of each of these organelles
in a cell, with more copies resulting in more expressed products. Mitochon-
drial DNA (mtDNA) is particularly important for anthropological analyses,
and we will use it to discuss whole genome comparisons within humans in
Chapter 5.

1.3 Probabilistic models of genome sequences

All models are wrong, but some are useful.
(G. E. P. Box)

When the first whole genome of a free-living organism was sequenced in 1995,
much was already known about the general workings of cellular function, and
many things were also known about DNA sequences. Complete genomes of
small viruses and organelles were available in the early 1980s, as were the
sequences of individual genes from a variety of organisms. Although nothing
done before 1995 compared in scale with the problems that were to be addressed
when analyzing even a simple bacterial genome, earlier experiences provided
the basic statistical techniques that were to evolve into modern whole-genome
analysis.

A large part of the study of computational genomics is comprised of sta-
tistical methods. While any undertaking involving millions or billions of data
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6 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

points necessarily requires statistics, the problem is especially acute in the
study of DNA sequences. One reason for this is that we often wish to find
structures of interest (such as genes) in sequences of millions of bases, and in
many important cases most of those sequences do not contain biologically rele-
vant information. In other words, the signal-to-noise ratio in genome sequences
may be very low. As we will see, interesting elements are often immersed in
a random background – detecting them requires sophisticated statistical and
algorithmic tools.

As a first step, we need to have probabilistic models of DNA sequences.
These will set a foundation for all of the analyses that follow in this book. We
first define some of the basic concepts in probabilistic models of DNA, and then
present a simple statistical framework for the analysis of genome sequence data.
To highlight the usefulness of probabilistic models we continue the chapter by
carrying out simple analyses of genome sequences. Later chapters will introduce
increasingly sophisticated biological questions and the commensurate statistical
methods needed to answer them.

Alphabets, sequences, and sequence space. Although we should not forget
that DNA is a complex molecule with three-dimensional properties, it is often
convenient to model it as a one-dimensional object, a sequence of symbols from
the alphabet {A,C,G,T}. This abstraction is extremely powerful, enabling us
to deploy a large number of mathematical tools; it is also incorrect, in that it
neglects all the information that might be contained in the three-dimensional
structure of the molecule. In this book we make this approximation, without
any further warning, and will develop statistical and computational methods of
analysis based on it.

Definition 1.1
DNA sequences and genomes: formal model. A “DNA sequence,” s, is a finite
string from the alphabet N = {A,C,G,T} of nucleotides. A “genome” is the
set of all DNA sequences associated with an organism or organelle.

This representation of genomes as strings from an alphabet is very general,
and enables us to develop statistical models of sequence evolution, sequence
similarity, and various forms of sequence analysis. Some of them are discussed
in this chapter.

Definition 1.2
Elements of a sequence. We denote the elements of a sequence as follows
s = s1s2. . . sn , where an individual nucleotide is represented by si . Given a set
of indices K , we can consider the sequence formed by concatenating together
the corresponding elements of s in their original order: s(K ) = si s j sk if K =
{i, j, k}. If the set is a closed interval of integers, K = [i, j], we can denote it
also as K = (i : j); the corresponding subsequence is the substring s(i : j). If
it is formed by just one element, K = {i}, then this indicates a single, specific
symbol of the sequence: si = s(i).
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1 .3 PROBABIL ISTIC MODELS OF GENOME SEQUENCES 7

Example 1.2
Elements of a sequence. In the DNA sequence s =ATATGTCGTGCA we find
s(3 : 6) =ATGT and s(8) = s8 = G.

Remark 1.1
Strings and sequences. Note that what we call sequences in biology are usu-
ally called strings in standard computer science terminology. This distinction
becomes relevant in computer science when defining subsequences and sub-
strings, two very different objects. What we call subsequences in this book –
contiguous, shorter sequences from a longer sequence – are called substrings in
computer science, where subsequences refer to non-contiguous sets of symbols
from a longer sequence.

Nearly all probabilistic sequence analysis methods assume one of two sim-
ple models, or variations thereof. They are the multinomial model and the
Markov model, and will be described below. As is often the case in modeling,
these do not need to mimic true DNA sequences in every respect. Their main
feature is that they capture enough of the properties of sequences while still be-
ing efficiently computable. In other words, they are the result of a compromise
between accuracy and efficiency.

Although in this chapter we deal with DNA sequences, in the rest of the book
we will find various other types of biological sequences; sequences defined on
different alphabets. All the algorithms we present will be valid for any type of
sequence, and we will often define them in terms of a generic alphabet �, so as to
preserve generality. The most common other types of biological sequences are
RNA sequences (also defined over a 4 letter alphabet, NRN A = {A,C,G,U}),
and amino acid sequences (based on a 20 letter alphabet

A = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}

and discussed further in Chapter 2). It is often also useful to define a sequence
of codons (see Chapter 2), where the alphabet is formed by all triplets from the
nucleotide alphabet N and will be indicated by C = {AAA, · · · ,TTT}.

Multinomial sequence models. The simplest model of DNA sequences as-
sumes that the nucleotides are independent and identically distributed (the
“i.i.d.” assumption): the sequence has been generated by a stochastic process
that produces any of the four symbols at each sequence-position i at random,
independently drawing them from the same distribution over the alphabet N .
This is called a multinomial sequence model, and is simply specified by choos-
ing a probability distribution over the alphabet, p = (pA, pC , pG , pT ), where
the probability of observing any of the four nucleotides at position i of the
sequence s is denoted by px = p(s(i) = x) and does not depend on the position
i . This model can also be used to calculate the probability of observing the
generic symbol x ∈ � (i.e. x within any alphabet).

For this model we could assume that all four nucleotides are of equal fre-
quency (pA=pC =pG=pT ), or that they are the observed frequencies from some
dataset. Our only requirement is that the distribution needs to satisfy the nor-
malization constraint pA + pC + pG + pT = 1.
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8 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

The multinomial model allows us to easily calculate the probability of a
given sequence (denoted P), also called the likelihood of the data given the
model (denoted L). Given a sequence s = s1s2...sn , its probability is

P(s) =
n∏

i=1

p(s(i)).

This is equivalent to multiplying together the probabilities of all of the individual
nucleotides.

Of course we do not expect DNA sequences to be truly random, but having
a model that describes the expectation for a randomly generated sequence can
be very helpful. Furthermore, this simple model already captures enough of a
sequence’s behavior to be useful in certain applications, while remaining very
easy to handle mathematically. Even finding violations of this simple model
will point us towards interesting regions of the genome. We can easily test if
this model is realistic by checking to see whether real data conform to its as-
sumptions. We can do this either by estimating the frequencies of the symbols
in various regions of the sequence – to check the assumption of stationarity
of the independent and identically distributed (i.i.d). probability distribution
across the sequence – or by testing for violations of the independence assump-
tion by looking for correlations among neighboring nucleotides. Regions that
both change in the frequency of A,C,G, and T and where there are strong
correlations among nearby symbols can be quite interesting, as we will show
later.

Markov sequence models. A more complex model of DNA sequences is pro-
vided by the theory of Markov chains. In Markov chains the probability of
observing a symbol depends on the symbols preceding it in the sequence. In so
doing, Markov chains are able to model local correlations among nucleotides.
A Markov chain is said to be of order 1 if the probability of each symbol only
depends on the one immediately preceding it, and of increasing order as the
dependency on past symbols extends over greater distances. We can think of
the multinomial model as a Markov chain of order 0 because there is no depen-
dence on previous symbols. How do we know which model to pick, or what
order Markov model to pick? This is a problem of hypothesis testing, a topic
we address in Chapter 2. For now, we will simply discuss the basic aspects of
Markov models. (Markov chains are central tools in bioinformatics, and we
will encounter them again in Sections 5.4.1 and 5.4.2).
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Fig. 1.1 The trajectory of a
Markov chain process generates a
sequence of symbols. Starting at
any one of the four nucleotides,
the probability of the next
nucleotide in the sequence is
determined by the current state.

Briefly, a Markov chain is a process defined by a set of states (in this case
the symbols of an alphabet) and by a transition probability from one state
to the next. The transition probabilities are organized in the transition matrix T .
The trajectory of the process through the state space defines a sequence. This
is represented in Figure 1.1.

The figure shows that, starting at any one of the four nucleotides, the prob-
ability of the next nucleotide in the sequence is determined by the current state.
If we start at G, the probabilities of any of the four other nucleotides appearing
next are given by pG A, pGC , pGG , and pGT . Moving to another nucleotide state
means that there are new transition probabilities: if we moved to state A, these
would be pAA, pAC , pAG , and pAT . In this manner, a Markov chain defines a
DNA sequence. All of the transition probabilities are given by the matrix T ,
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1 .3 PROBABIL ISTIC MODELS OF GENOME SEQUENCES 9

and the probability for the start state is given by π = (πA, πC , πG, πT ), again
with the obvious normalization constraint:

T =
pAA pAC pAG pAT

pC A pC A pCG pCT

pG A pGC pGG pGT

pT A pT C pT G pT T

π = πA πC πG πT .

The Markov model therefore no longer assumes that the symbols are indepen-
dent, and short-range correlations can be captured (if the transition probabilities
are all 0.25, we are again back at a multinomial model).

Example 1.3
Markov DNA sequence. Using the Markov chain defined by uniform starting
probabilities (π ) and the transition matrix

T =

to A to C to G to T
from A 0.6 0.2 0.1 0.1
from C 0.1 0.1 0.8 0
from G 0.2 0.2 0.3 0.3
from T 0.1 0.8 0 0.1

we generated the following sequence:

ACGCGTAATCAAAAAATCGGTCGTCGGAAAAAAAAAATCG

As you can see, many As are followed by As, Ts are followed by Cs, and Cs are
followed by Gs, as described by our transition matrix.

The entries in the transition matrix are defined formally as follows:

pxy = p(si+1 = y|si = x).

This says that the probability of going from state x to state y is equivalent to the
conditional probability of seeing state y given that it was preceded by state x .
We generally define the probability of an entire sequence as a joint probability:

P(s) = P(s1s2 · · · sn).

The computation of this probability can be greatly simplified when we can
factorize it. In the case of multinomial models, the factorization is obvious:
P(s) = p(s1)p(s2) . . . p(sn); for Markov chains (of order 1) it is only slightly
more complicated:

P(s) = P(sn|sn−1)P(sn−1|sn−2) · · · P(s2|s1)π (s1)

or

P(s) = π (s1)
n∏

i=2

p(si |si−1) = π (s1)
n∏

i=2

psi−1si,

where π (s1 = x) represents the probability of seeing symbol x in position s1.
In other words, we exploit the fact that the probability of a symbol depends
only on the previous one to simplify the computation of the joint probability of
the entire sequence.
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10 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Table 1.2 Basic statistics of the H. influenzae genome:
the count of each nucleotide and its relative frequency. The
total length of the sequence is 1 830 138 bp.

Base Number Frequency

A 567,623 0.3102
C 350,723 0.1916
G 347,436 0.1898
T 564,241 0.3083

1.4 Annotating a genome: statistical
sequence analysis

There are various elements of interest in a genome sequence, and many
of them will be discussed in various chapters of this book. For example,
Chapter 2 will discuss the structure of genes, how we find them, and the way in
which they are regulated. Here we examine simpler statistical properties of the
DNA sequences such as the frequency of nucleotides, dinucleotides (pairs of
bases), and other short DNA words. We will see that this preliminary descrip-
tion is of fundamental importance for genome annotation, as well as a stepping
stone for further analysis.

Base composition. One of the most fundamental properties of a genome se-
quence is its base composition, the proportion of A, G, C, and T nucleotides
present. For H. influenzae, we can easily count the number of each type of
base and divide by the total length of the genome (performing both opera-
tions on only one strand of the DNA sequence) to obtain the frequency of each
base. Table 1.2 shows the number of times each base appears in the genome,
and its relative frequency (the total length, L , of the H. influenzae genomes is
1 830 138 bp).

We can see that the four nucleotides are not used at equal frequency across
the genome: A and T are much more common than G and C. In fact, it is fairly
unusual for all of the bases to be used in equal frequencies in any genome. We
should point out that, while we have only counted the bases on one strand of
the DNA molecule, we know exactly what the frequency of all the bases are
on the other strand because of the complementarity of the double helix. The
frequencies in the complementary sequence will be T = 0.3102, G = 0.1916,
C = 0.1898, and A = 0.3083.

In addition to the global base composition of a genome, it is of inter-
est to consider local fluctuations in the frequencies of nucleotides across the
sequence. We can measure local base composition by sliding a window of size
k along a chromosome, measuring the frequency of each base in the window,
and assigning these values to the central position of the window. This produces
a vector of length L − k + 1 that can be plotted, as seen in Figures 1.2 and 1.3
(with window sizes 90 000 bp and 20 000 bp, respectively).
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