Contents

	List c	f figures	<i>page</i> ix
	List c	f abbreviations	xi
	List c	f notation	xiii
1	Intro	duction	1
2	Mult	icarrier signals	3
	2.1	Model of multicarrier communication system	3
	2.2	Peak power definitions	5
	2.3	Efficiency of power amplifiers	10
	2.4	Models of HPA nonlinearities	12
	2.5	Notes	15
3	Basic	tools and algorithms	17
	3.1	Elements of harmonic analysis	18
	3.2	Elements of probability	32
	3.3	Elements of algebra	34
	3.4	Elements of coding theory	41
	3.5	Fast computation of the maximum of DFT	63
	3.6	Notes	66
4	Discr	ete and continuous maxima in MC signals	68
	4.1	Nyquist sampling	68
	4.2	Estimating the continuous maximum from the discrete	
		one and its derivative	76
	4.3	Dependence of the ratio on the maximum	83
	4.4	Oversampling	87
	4.5	Projections on measuring axes	98
	4.6	Relation between PAPR and PMEPR	100
	4.7	Notes	102

vii	i	Contents	
5	Statis	tical distribution of peak power in MC signals	104
	5.1	Upper bounds for PMEPR distribution	104
	5.2	Lower bounds for PMEPR distribution	111
	5.3	Gaussian process models	118
	5.4	Lower bound on the number of signals with constant PMEPR	125
	5.5	BPSK signals with essentially high peaks	131
	5.6	Notes	136
6	Code	d MC signals	138
	6.1	Spherical codes	138
	6.2	Bounds on PAPR of codes	143
	6.3	Codes with known distance distribution	152
	6.4	BCH codes	158
	6.5	Fast computation of PMEPR and PAPR of codes	164
	6.6	Notes	166
7	MC s	ignals with constant PMEPR	167
	7.1	Peak power and aperiodic correlation	167
	7.2	Rudin–Shapiro sequences	170
	7.3	Complementary sequences	172
	7.4	Complementary sets	180
	7.5	Polyphase complementary sequences	183
	7.6	Trace codes	190
	7.7	<i>M</i> -sequences	194
	7.8	Legendre sequences	203
	7.9	Notes	205
8	Meth	ods to decrease peak power in MC systems	209
	8.1	Deliberate clipping and filtering	209
	8.2	Selective mapping	217
	8.3	Balancing method	219
	8.4	Use of codes of given strength	224
	8.5	Trellis shaping	233
	8.6	Tone injection	236
	8.7	Active constellation extension	237
	8.8	Constellation shaping	240
	8.9	Partial transmit sequences	242
	8.10	Peak reduction carriers	246
	8.11	Comparison	248
	8.12	Notes	249
	Bibli	iography	253
	Inde.	x	276