PEAK POWER CONTROL IN MULTICARRIER COMMUNICATIONS

The implementation of multicarrier (MC) modulation in wireless and wireline communication systems, such as OFDM and DMT, is restricted by peak signal power, due to a sensitivity of the technique to distortions introduced by nonlinear devices. By controlling the peak power, the negative influence of signals with high peaks on the performance of the transmission system is greatly reduced. This book describes the tools necessary for analyzing and controlling the peak-to-average power ratio in MC systems, and how these techniques are applied in practical designs. The author starts with an overview of MC signals and basic tools and algorithms, before discussing properties of MC signals in detail: discrete and continuous maxima; statistical distribution of peak power, and codes with constant peak-to-average power ratio are all covered, concluding with methods to decrease peak power in MC systems. Current knowledge, problems, methods, and definitions are summarized using rigorous mathematics, with an overview of tools for the engineer. This book is aimed at graduate students and researchers in electrical engineering, computer science, and applied mathematics, as well as practitioners in the telecommunications industry. Further information on this title is available at www.cambridge.org/9780521855969.

SIMON LITSYN received his Ph.D. in Electrical Engineering from the Leningrad Electrotechnical Institute in 1982. He is currently a professor in the Department of Electrical Engineering Systems at the Tel Aviv University, where he has been since 1991. From 2000 to 2003 he served as an Associate Editor for Coding Theory in the IEEE Transactions on Information Theory. His research interests include coding theory, communications, and applications of discrete mathematics. He is the author of more than 150 journal articles.

Cambridge University Press 978-0-521-85596-9 - Peak Power Control in Multicarrier Communications Simon Litsyn Frontmatter <u>More information</u>

PEAK POWER CONTROL IN MULTICARRIER COMMUNICATIONS

SIMON LITSYN

School of Electrical Engineering, Tel Aviv University

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521855969

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-85596-9 hardback ISBN-10 0-521-85596-9 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-85596-9 - Peak Power Control in Multicarrier Communications Simon Litsyn Frontmatter <u>More information</u>

To the memory of my mother.

Contents

	List of figures		<i>page</i> ix
	List of abbreviations		
	List c	xiii	
1	Introduction		
2	Multicarrier signals		3
	2.1	Model of multicarrier communication system	3
	2.2	Peak power definitions	5
	2.3	Efficiency of power amplifiers	10
	2.4	Models of HPA nonlinearities	12
	2.5	Notes	15
3	Basic tools and algorithms		17
	3.1	Elements of harmonic analysis	18
	3.2	Elements of probability	32
	3.3	Elements of algebra	34
	3.4	Elements of coding theory	41
	3.5	Fast computation of the maximum of DFT	63
	3.6	Notes	66
4	Discr	ete and continuous maxima in MC signals	68
	4.1	Nyquist sampling	68
	4.2	Estimating the continuous maximum from the discrete	
		one and its derivative	76
	4.3	Dependence of the ratio on the maximum	83
	4.4	Oversampling	87
	4.5	Projections on measuring axes	98
	4.6	Relation between PAPR and PMEPR	100
	4.7	Notes	102

viii		Contents	
5	Statis	tical distribution of peak power in MC signals	104
-	5.1	Upper bounds for PMEPR distribution	104
	5.2	Lower bounds for PMEPR distribution	111
	5.3	Gaussian process models	118
	5.4	Lower bound on the number of signals with constant PMEPR	125
	5.5	BPSK signals with essentially high peaks	131
	5.6	Notes	136
6	Coded MC signals		138
	6.1	Spherical codes	138
	6.2	Bounds on PAPR of codes	143
	6.3	Codes with known distance distribution	152
	6.4	BCH codes	158
	6.5	Fast computation of PMEPR and PAPR of codes	164
	6.6	Notes	166
7	MC si	ignals with constant PMEPR	167
	7.1	Peak power and aperiodic correlation	167
	7.2	Rudin–Shapiro sequences	170
	7.3	Complementary sequences	172
	7.4	Complementary sets	180
	7.5	Polyphase complementary sequences	183
	7.6	Trace codes	190
	7.7	<i>M</i> -sequences	194
	7.8	Legendre sequences	203
	7.9	Notes	205
8	Methods to decrease peak power in MC systems		209
	8.1	Deliberate clipping and filtering	209
	8.2	Selective mapping	217
	8.3	Balancing method	219
	8.4	Use of codes of given strength	224
	8.5	Trellis shaping	233
	8.6	Tone injection	236
	8.7	Active constellation extension	237
	8.8	Constellation shaping	240
	8.9	Partial transmit sequences	242
	8.10	Peak reduction carriers	246
	8.11	Comparison	248
	8.12	Notes	249
	Bibli	iography	253
	Inde.	X	276

Figures

2.1	MC transmitter	page 4
2.2	Envelope of a BPSK modulated MC signal for $n = 16$	5
2.3	Examples of standard constellations	6
2.4	CCDFs of PMEPR of MC signal with 256 and 1024 QPSK	
	modulated subcarriers	9
2.5	Input-output power characteristic of a HPA	10
2.6	Efficiency as a function of output power back-off	12
4.1	Typical behavior of the absolute value of the Dirichlet kernel	
4.2	Extremal function	91
4.3	The triangle	101
5.1	Approximations to PMEPR distribution of MC signal with 256	
	QPSK modulated subcarriers. Approximation 1 – Expression (5.62),	
	Approximation 2 – Expression (5.64)	124
7.1	$ F_{\mathbf{a}}(t) $ and $ F_{\mathbf{b}}(t) $	174
7.2	Graph $G(Q)$ for $Q = x_0x_1 + x_0x_2 + x_0x_3 + x_1x_2 + x_2x_3$	189
8.1	Excursion of a Gaussian process above $ A $	213
8.2	PMEPR distribution for $n = 512$ and QPSK modulation for selective	
	mapping method	218
8.3	PMEPR distribution for $n = 128$ and QPSK using the balancing	
	method (after [373])	224
8.4	PMEPR distribution for $n = 128$ and QPSK using the strength 10	
	dual BCH code (after [251])	233
8.5	Constellation mapping for 16-QAM	235
8.6	Trellis shaping for 256-QAM and $n = 256$ (after [293])	235
8.7	Constellations for 16-QAM	237
8.8	PMEPR distribution of the signal modified after four iterations for	
	16-QAM and $n = 64$ (after [400])	237
8.9	Possible extensions for QPSK	238
8.10	Possible extensions for 16-QAM	239
8.11	PMEPR for QPSK-modulated $n = 256$ MC system with ACE	
	algorithm (after [220])	240

xList of figures8.12PMEPR distribution for n = 128 and the number of constellation
points equal to the one in 16-QAM (after [274])2438.13PMEPR distribution for n = 512 and QPSK modulation for partial
transmit sequences with factors chosen from $\{\pm 1, \pm i\}$ 2448.14PMEPR distribution for n = 512 and QPSK modulation with PRC
algorithm (5% of PRC) applied with four iterations (after [400])247

Abbreviations

ACE	active constellation extension
ACI	adjacent channel interference
ACPR	adjacent channel power ratio
ADC	analog-to-digital converter
AM/PM	amplitude modulation/phase modulation
BCH	Bose-Chaudhuri-Hocquenghem (codes)
BER	bit error rate
(B)PSK	(binary) phase-shift keying
BS	block scaling
CCDF	complementary cumulative distribution function
CDMA	code division multiple access
CF	crest factor
CS	codes of strength
DAB	digital audio broadcasting
DAC	digital-to-analog converter
DC	direct current
(I)DFT	(inverse) discrete Fourier transform
DMT	discrete multitone
(A/H)DSL	(asymmetric/high speed) digital subscriber line
DVB	digital video broadcasting
EVM	error vector magnitude
(I)FFT	(inverse) fast Fourier transform
GI	guard interval
HIPERLAN	high performance radio local area network
HPA	high-power amplifier
IBO/OBO	input/output back-off
ICI	inter-carrier interference
ISI	inter-symbol interference

xii List of abbreviations LDPC low-density parity-check (codes) LPF low-pass filter multicarrier MC **MIMO** multiple-input multiple-output OFDM orthgonal frequency division multiplexing orthgonal frequency division multiple access **OFDMA** peak-to-average power ratio PAPR **PMEPR** peak-to-mean envelope power ratio (quadrature) phase-shift keying (Q)PSK PRC peak reduction carriers PTS partial transmit sequences QAM quadrature amplitude modulation RM Reed–Muller (codes) random phasor RP Reed–Solomon (codes) RS SER symbol error rate SI side information SLM selective mapping SL soft limiter signal-to-noise ratio SNR solid-state power amplifier **SSPA** tone injection TΙ TS trellis shaping traveling-wave tube amplifier TWTA UWB ultra wide band **WLAN** wireless local area network WMAN wireless metropolitan area network **WPAN** wireless personal area network

Notation

\mathbb{Z}	integer numbers
\mathbb{N}	natural numbers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
\mathbb{F}	finite field
$\Re(\cdot)$	real part
$\Im(\cdot)$	imaginary part
ı	$\sqrt{-1}$
a^*	complex conjugate of $a \in \mathbb{C}$
a	absolute value of $a \in \mathbb{C}$
arg(a)	argument of a
a	vector
(a , b)	dot product of vectors a and b
∥a∥	norm of a
A^t	transposed matrix A
$E_{\rm av}$	average energy of constellation
$E_{\rm max}$	maximum energy of a constellation point
f_0	carrier frequency
$f_{ m s}$	tone bandwidth
\mathcal{M}_{c}	continuous maximum
\mathcal{M}_{d}	discrete maximum
g.c.d.	greatest common divisor
i.i.d.	independent identically distributed
p.d.f.	probability density function
p.s.d.	power spectral density
deg	degree of a polynomial
sinh	hyperbolic sine
cosh	hyperbolic cosine
sign	sign