
1 Introduction

1.1 Scope of the Book

Turbulence is well known to be one of the most complex and exciting fields of re-
search that raises many theoretical issues and that is a key feature in a large number
of application fields, ranging from engineering to geophysics and astrophysics. It is
still a dominant research topic in fluid mechanics, and several conceptual tools de-
veloped within the framework of turbulence analysis have been applied in other
fields dealing with nonlinear, chaotic phenomena (e.g., nonlinear optics, nonlinear
acoustics, econophysics, etc.).

Despite more than a century of work and a number of important insights, a
complete understanding of turbulence remains elusive, as witnessed by the lack of
fully satisfactory theories of such basic aspects as transition and the Kolmogorov
k−5/3 spectrum. Nevertheless, quantitative predictions of turbulence have been de-
veloped. They are often based on theories and models that combine “true” dynam-
ical equations and closure assumptions and are supported by physical and – more
and more – numerical experiments.

Homogeneous turbulence remains a timely subject, even half a century after
the publication of Batchelor’s book in 1953, and this framework is pivotal in the
present book. Homogeneous isotropic turbulence (HIT) is the best known canonical
case; it is very well documented – even if not completely understood – from exper-
iments and simple models to recent 40963 full direct numerical simulation (DNS).
Of course, this case is addressed (in Chapter 3), but more generally emphasis is
put on homogeneous anisotropic turbulence (HAT) in the presence of mean (ve-
locity, temperature, etc.) gradients, body forces, or both. This context is illustrated
by several physical and numerical experiments (the latter being easy to perform
by slight modification of pseudo-spectral numerical methods designed for DNS of
isotropic turbulence following the method introduced by Rogallo in the late 1970s),
but its interest for developing fundamental understanding and improving theories
and models is largely underestimated regarding the existing literature. Depending
on the strength of the distortion (by mean gradients and/or body forces) and its time
of application, it is possible to move from pure linear approaches, such as the rapid
distortion theory (RDT), to fully nonlinear statistical theories, with the important
intermediate step of “weak” turbulence theories, such as the wave-turbulence the-
ory. As far as possible, it is proposed to pass from “weak” to “strong” turbulence by
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2 Introduction

Nonlinear closures/theories 
(all triadic interactions taken into account)

Wave-turbulence theory 
(resonant triadic interactions only)

Linear theory 
(no triadic interaction)

Figure 1.1. Sketch of the hierarchy of embed-
ded turbulence theories and closures.

following a strict hierarchy of embedded models and theories, which is illustrated in
Fig. 1.1.

This strategy was introduced by the second author in his contribution to the
recent book Theories of Turbulence (Oberlack and Busse, 2002). Even if the most
original part of the present book deals with two-point statistics, the Reynolds stress
budget is very informative and therefore Reynolds stress equations are discussed
before more complex approaches are addressed. Limits or failures of single-point
closures are highlighted in each case.

A discussion of the physical relevance of the HAT cannot be avoided, and we
show that homogeneous turbulence in the presence of space-uniform mean gradi-
ents is not so ideal and restrictive. In addition to physical and numerical experiments
that are capable of reproducing HAT, some typical equations (e.g., Townsend or
Craya equations) are shown to remain relevant for analyzing flows with nonuniform
mean gradients [e.g. short-wave stability analyses, Wentzel–Kramers–Brillouin
(WKB) RDT]. In some cases, pedagogical explanations for “pure” homogeneous
turbulence can be extended toward inhomogeneous turbulence (e.g., near-wall tur-
bulent shear flow). Another important point is that homogeneous sheared turbu-
lence exhibits self-sustained cycles, which are key features of turbulence dynamics
in near-wall regions.

A large number of books devoted to turbulence are available that put the em-
phasis on three aspects: statistical properties of isotropic, incompressible turbulence
(e.g., Batchelor, 1953; Frisch, 1995; Tsinober, 2001, Davidson, 2004), descriptions of
global dynamics and statistical properties of some academic flows (boundary layer,
mixing layer, jet, wake, etc.; e.g., Townsend, 1976; Smits and Dussauge, 2006), and
modeling of turbulent motion for engineering purpose (among others, Durbin and
Petersson Reif, 2001; Wilcox, 2004). Only little information on the dynamics of tur-
bulent scales is usually provided, and most authors put the emphasis on a partic-
ular feature. One should of course mention general-purpose textbooks (see Pope,
2000; Tennekes and Lumley, 1994; Bailly and Comte-Bellot, 2003), which provide
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1.2 Structure and Contents of the Book 3

the reader with a general survey of different issues related to turbulence research.
Therefore, recent results dealing with dynamics of turbulent motion obtained from
DNSs, advanced statistical models (linear theories and models, nonlinear triadic clo-
sures, etc.), and experiments are not available to the reader in a single book. Results
are disseminated among a huge number of journal articles, technical reports, and
conference papers that do not always use the same terminology.

The present book aims at providing a state-of-the-art sum of results and theories
dealing with homogeneous turbulence, including anisotropic effects and compress-
iblity effects. The underlying idea is to gather the most recent results dealing with
the dynamics of homogeneous turbulence when it interacts with external forcing
(strain, rotation, etc.) and when compressibility effects are in play. Each chapter will
be devoted to a given type of interaction and will present and compare experimen-
tal data, DNS/LES (large-eddy simulation) results, analysis of the Reynolds stress
budget equations, and advanced linear and nonlinear theoretical models. The roles
of both linear and nonlinear mechanisms are emphasized. The link between the sta-
tistical properties and the dynamics of coherent structures is also addressed. Despite
its being restricted to homogeneous turbulence, this book will be of interest to all
people involved in turbulence studies, as it will highlight basic physical mechanisms
that are present in all turbulent flows.

Another interest of this book is the possiblity for the reader to find a unified
presentation of the results and also a clear presentation of existing controversies
and shortcomings in the theoretical background. Special attention is paid to bridging
gaps among the results obtained in different research communities. This last point is
developed concerning both results dealing with turbulence dynamics and the tools
used to investigate it.

1.2 Structure and Contents of the Book

The presentation of the results is carried out in such a way that it allows for two
levels of reading: a first level for readers interested in the results but who do not want
to enter into the details of the tools (i.e., linear and nonlinear theoretical models)
employed to get them, and a second level for readers interested in these details.

The book is organized in 15 chapters, with turbulent-flow cases ranging from
HIT (without distortion, Chapter 3) to HAT subjected to various distorting pro-
cesses (rotation, strain, shear, stratification) in Chapters 4–7. Flows subjected to
coupled forcing effects are collected in Chapter 8, whereas compressible turbulence
is addressed in Chapters 9–11. Chapter 2 presents the basis of dynamical (conserva-
tion equations) and statistical analyses of turbulence.

Technical details about theroretical tools and theories used in Chapters 3–11
are gathered in dedicated chapters whose reading is not mandatory. The linear-
interaction theory for shock–turbulence interaction is presented in Chapter 12. Lin-
ear theories such as the RDT are detailed in Chapter 13, and two-point nonlinear
closure theories [e.g., eddy-damped quasi-normal Markovian (EDQNM) theory]
are addressed in Chapter 14. Some concluding comments are presented Chapter 15.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-85548-8 - Homogeneous Turbulence Dynamics
Pierre Sagaut and Claude Cambon
Excerpt
More information

http://www.cambridge.org/9780521855488
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

Constraints for ensuring consistency of statistical homogeneity – for turbu-
lence – with the distorting processes are given in the most general way, for both
incompressible (particularly in Chapter 2) and compressible (Chapter 10) flows. The
physical relevance of this framework is also discussed.

Every typical flow case is revisited under different angles of attack, from obser-
vations and simulations, models, to theories, combining dynamical, statistical, and
structural aspects, as follows:

1. observations, physical, and numerical experiments
2. analysis through Reynolds stress tensor (RST) equations, and balance and cou-

pling terms
3. refined analysis using linear theory
4. refined analyses through full nonlinear theories and models for two-point statis-

tics (if available)
5. phenomenological (and possibly dynamical) approach to structures, evolution,

coupling.

It is worth noting that two classes of flows are discussed in this book. The first
one is the class of flows without turbulence-production mechanisms (e.g., decaying
isotropic turbulence, rotating homogeneous turbulence, stably stratified homoge-
neous turbulence, etc.) and flows with turbulent-kinetic-energy-production mech-
anisms (e.g. homogeneous sheared turbulence). In the former case, nonlinear dy-
namics and its modification by mean-flow effects are the sole features of the flow,
whereas in the latter case linear mechanisms are the main dynamical characteristics.
Therefore nonlinear models are the tools of choice in the first case (but eigenfunc-
tions of the linear theories can provide an optimal basis to write them), whereas
they are only briefly discussed in flows with productions for which linear theories
are very powerful.

The most complete illustration of the hierarchy of models embedded in each
other is the case of pure rotation (Chapter 4). Common models, such as RST clo-
sure models, are shown to present definite flaws in this case, and some limited at-
tempts to improve single-point closure techniques are only briefly reviewed. As an
important related point, linear theories such as the RDT were only briefly reviewed
for irrotational mean flows only in other recent monographs about turbulence (e.g.,
Pope, 2000; Durbin and Petersson Reif, 2001), with the only exception of pure shear
in the book by Townsend (1976), written a long time ago. In contrast, linear the-
ory for HAT subjected to more general rotational mean flows is a very important
part of the present book. In addition, our extended linear theory is a building block
that may be useful for a wider community (e.g., elliptical-flow instability from the
viewpoint of stability analysis, rotating and/or stratified shear flow, in Chapter 8).

The application domain of two-point nonlinear closures is even more restricted
in existing monographs (e.g., Monin and Yaglom, 1975; Leslie, 1973; Lesieur, 1997;
Frisch, 1995). Only isotropic turbulence is treated in a straightforward way, and only
a few attempts to deal with small anisotropy are offered, whereas the linkage to
linear models and wave turbulence is ignored.
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1.2 Structure and Contents of the Book 5

The last item about “structures” deserves some clarification. On the one hand,
it is recognized that typical structures can be evidenced by snapshots, or random
realizations, of statistically homogeneous flows. The first example is the appearence
of vortex tubes in isotropic turbulence. Other well-known structures are streaklike
(in shear flows), cigar (in flows with dominant rotation), or pancake (flows with
dominant stable stratification) structures. On the other hand, the relevance of low-
order statistics to identify and quantify these structures is controversial. Second-
order statistics, if they include fully anisotropic two-point correlations, can give real
insight into these structures, with quantitative information (elongation parameters,
aspect ratios). An objection can be made that phase coherence is lost in homoge-
neous statistics – at least for single-time second order – so that some aspects of co-
herent structures are not accounted for. Accordingly, we will speak of structures, or
structuring effects, avoiding “coherent,” when we identify them by using anisotropic
statistics and not only using visualizations of snapshots.

The advanced models and theories selected here systematically incorporate dy-
namical operators that are really based on Navier–Stokes equations, even if they
deal with “weak” turbulence only (e.g., linearized models, wave turbulence), not to
mention exact triadic equations and conventional two-point closures based on them.
Three-dimensional (3D) Fourier space is an unavoidable tool in HAT analysis; it
is first considered here as a mathematical convenience to account for solenoidal
properties (in isovolume turbulence) and to simplify related modal decompositions.
Special use is made of decomposition of the fluctuating velocity in Fourier space,
often referred to as the Craya–Herring decomposition, which amounts to a general
Helmholtz decomposition, in terms of two solenoidal (toroidal–poloidal type), or
vortical, modes and one dilatational (or divergent) mode. In incompressible turbu-
lence, a Poisson equation is immediately recovered by projecting momentum equa-
tions onto the dilatational mode, the dilatational velocity mode being zero, so that
dynamical equations deal with only the two solenoidal modes. This decomposition
readily generates the helical-mode decomposition, and various “vortex-wave” de-
compositions when buoyancy fluctuation is accounted for (Chapters 7 and 8). The
dilatational mode recovers its dynamic role, together with the pressure mode, when
compressibility is introduced. The increase of the complexity of the system can be
presented as follows:

1. Two-mode turbulence, in which the two independent unknowns are u(1), u(2) us-
ing the toroidal–poloidal decomposition, or u(2) ± ıu(1) considering the helical-
mode variant. The dilatational mode u(3) is strictly zero so that the pressure
mode u(4) is completely solved in terms of the two solenoidal ones, and there-
fore removed from consideration (Chapters 2–6).

2. Three-mode turbulence. Same situation as before, but an additional buoy-
ancy term is incorporated as a pseudo-dilatational mode. The physical problem
with five components (three for velocity fluctuations, one for pressure fluctua-
tions, one for buoyancy fluctuations) is turned into a three-mode one thanks to
the Boussinesq approximation (divergence-free velocity field and the related
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6 Introduction

Poisson equation for pressure hold again, even if buoyancy exists), used in
Chapters 7 and 8.

3. Four-mode turbulence u(1), . . . , u(4), as in the quasi-isentropic flow cases ad-
dressed in Chapters 9 and 10. If the acoustic-equilibrium hypothesis holds, u(3)

and u(4) can be combined as [u(4) ± ıu(3)], where u(3) corresponds to the kinetic
energy of acoustic waves and u(4) gives its potential counterpart.

4. Five-mode-turbulence, in which the last, fifth, entropy mode is added. In prac-
tice, decomposition in terms of five modes is possible, but not completely uni-
versal (discussed in Chapter 9). Introduction of a realistic entropy mode can
be puzzling in homogeneous turbulence, not to mention the question of using
density-weighted variables (velocity, momentum, or intermediate mixed quan-
tity). Nevertheless, a decomposition very close to the u(1)–u(5) one (toroidal–
poloidal–dilatational–pressure–entropy) is used in Chapter 11 to describe up-
coming perturbations passing through an idealized shock wave. Here, the Chu–
Kovasznay decomposition is a preferential tool, as it makes it possible to split
the incoming fluctuations into vortical, acoustic, and entropy modes. It is suf-
ficient, however, to take the solenoidal (vortical) mode as one component
only, so that four-mode turbulence is eventually used because upstream- and
downstream-traveling acoustic perturbations must be treated in separate ways.

Isotropy is generally broken by the dynamical operators, so that a complete
anisotropic description is needed, consistent with the symmetries of background
equations, both in physical (two-point correlations) and in Fourier space (spectral
tensors). It is worthwhile stressing that our detailed anisotropic description includes
dimensionality, with a possibility of quantifying a 3D to two-dimensional (2D) [or
to one-dimensional (1D)] transition. For instance, the structure-based modeling by
Kassinos and Reynolds, which allows us to distinguish dimensionality and compo-
nentality, becomes a by-product of our general description, at least for homoge-
neous turbulence.

This viewpoint allows us to classify the theoretical approaches to turbulence as
follows:

1. Theoretical “spectral-shell models” (as used by physicists to work on intermit-
tency) are not considered in the present book, and empirical (spherically aver-
aged) spectral models are only very briefly discussed ( in Chapters 13 and 14),
as solenoidal properties, and related exact pressure terms, cannot be preserved
by spherically averaged transport equations in Fourier space. Consequently,
equations that are exact and closed in the linear – rapid distortion – limit are
no longer closed after spherical averaging.

2. “Modern” phenomenological theories about scaling and intermittency, from
the legacy of Kolmogorov, are touched on, but in a minimal way, as they re-
tain very little from Navier–Stokes equations. Only the Kolmogorov equation
for the third-order structure function is partly based on Navier–Stokes, but it
also relies on additional assumptions like local isotropy and quasi-steadiness. In
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1.2 Structure and Contents of the Book 7

addition, a strong departure of the “anomalous exponents”∗ from the original
Kolmogorov theory (which leads to �n = n/3) is interpreted as intermittency
by physicists (see Bohr et al., 1998; Frisch, 1995). In contrast, wave turbulence
based on (even weakly nonlinear) Navier–Stokes dynamics can radically ques-
tion this viewpoint. Typical anomalous exponents can be found in the case of
rapid rotation, even for low-order structure functions (n = 2 and n = 3), with
no connection to intermittency (see Fig. 4.18 in Chapter 4 and the correspond-
ing discussion). The “anomality” of exponents reflects the strong anisotropy
linked to a partial transition from 3D to 2D structures and has probably noth-
ing to do with intermittency in this example. Generally, the pure statistical
description based on anomalous exponents, or extended self-similarity (ESS)
laws, mixes anisotropy, inhomogeneity, and intermittency in an intricate way.

3. “Old-fashioned” statistical two-point “triadic” closures, the simplest one being
EDQNM, are reconciled with linear models and wave-turbulence theory, and
finally are shown to be still useful and relevant (especially with respect to the
modern phenomenological theories quoted just before).

4. Low-order two-point (or more) moments are shown to be very informative:
second-order moments for energy distribution, third-order moments for energy
transfers (cascades), and fourth-order ones for typical closure, especially in con-
nection with associated dynamical equations. Higher-order moments, by means
of n-structure functions and full probability density functions (pdf’s) are very
briefly discussed.

Finally, Lagrangian statistics and passive scalar transport are not addressed, but
it is worth noting that linear theories and two-point closures have relevant applica-
tions in these domains.

Let us go back to Chapters 9–11, dealing with dynamics of compressible tur-
bulence. This issue is almost absent in most previous books dealing with turbu-
lence fundamentals. Chapter 9 is devoted to presentation of state-of-the-art knowl-
edge about the dynamics of compressible isotropic turbulence. The Chu–Kovazsnay
modal decomposition of turbulent fluctuations is first introduced to provide the
reader with a physical insight into coupling among acoustics, entropy, and vortic-
ity. Then the different regimes observed in numerical simulations and theoreti-
cal analyses are described: the pseudo-acoustic regime, the subsonic regime (both
pseudo-acoustic and thermal regimes are considered) and the supersonic regime. In
each case, details of the interactions and transfers among scales and modes are dis-
cussed, and the link with the dynamics of coherent events (vortical structures, acous-
tic waves, shocklets, etc.) is made. Some low-Mach triadic-interaction-theory results
are included, together with simplified models. Chapter 10 presents the coupling of
compressible turbulence with mean-gradient effects. In this chapter, the emphasis
is put on linear theory and DNS results because they are well suited to describe

∗ Often denoted �n in the literature, n being the order of the structure function that is supposed to
decay as r−�n .
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8 Introduction

dominant dynamical mechanisms in such strongly anisotropic flows. The theory of
compressible RDT is highlighted. Chapter 11 is dedicated to the shock–turbulence
interaction, which has been proved to be very accurately predicted by the linear in-
teraction approximation (LIA) for a large class of flows. The LIA is presented in
Chapter 12 in its most achieved version, and it is used to illustrate the physics of the
interaction of a shock with different kinds of fluctuations corresponding to the Chu–
Kovazsnay modes. A comparison with DNS and experimental results is also made.
Despite its being restricted to simple flow configurations, the basic physical mech-
anisms emphasized in this part are the building blocks for the interpretation and
understanding of the properties of compressible turbulent flows in complex config-
urations.
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2 Statistical Analysis of Homogeneous Turbulent
Flows: Reminders

2.1 Background Deterministic Equations

2.1.1 Mass Conservation

The equation of mass conservation is well known and does not need a long explana-
tion to be derived. Both Eulerian and Lagrangian forms are subsequently given. The
latter is less common in fluid dynamics but it deserves some attention, as it brings in
some fundamental Lagrangian concepts and relationships.

Let us begin by addressing the Eulerian description. To this end, we consider
a fixed arbitrary control volume V , delineated by a surface S. The total mass of the
fluid is governed by the following integral balance equation:

d

dt

∫∫∫
V

�(x, t)d3x︸ ︷︷ ︸
variation

= −
∫∫

S
�(x, t)u(x, t) · nd�︸ ︷︷ ︸

flux

+
∫∫∫

V
m(x, t)d3x︸ ︷︷ ︸

production

, (2.1)

in which � , u, andm are the density, the velocity, and the rate of mass production, re-
spectively. All these fields are assumed to be continuous fields in terms of time t and
Eulerian and Cartesian coordinates x. In this equation, d3x is the elementary volume
of a fluid particle, d� is the elementary surface with outward normal, and n is the unit
vector. The classical Ostrogradsky formula yields

∫∫
S �u ·nd� = ∫∫∫

V ∇ · (�u)d3x,
so that the previous equation is rewritten as

∫∫∫
V

[
∂�

∂t
+ ∇ · (�u) − m

]
d3x.

For the sake of clarity, the divergence of a vector V is denoted as ∇ · (V) or,
alternatively, ∂Vi

∂xi
in the following. The classical local and instantaneous counterpart

of the preceding equation is the continuity equation,

∂�

∂t
+ ∇ · (�u) = m. (2.2)

In the Lagrangian description, fluid particles follow trajectories, which are given
by the relationship

xi = x Li (X, t, t0), (2.3)
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