
Introduction

Let En denote the n-dimensional Euclidean space over the real number field
R and with an orthonormal basis �e1� e2� � � � � en�. Then each point x of En

can be uniquely expressed as

x = x1e1+x2e2+· · ·+xnen = �x1� x2� � � � � xn��

where xi is known as the ith coordinate of x with respect to the basis. Let
�u�v� denote the inner product of two vectors u and v and let �x�y� denote
the Euclidean distance between two points x and y, by which the Euclidean
metric is defined. With the coordinates of the vectors and the points, we can
write

�u�v� =
n∑

i=1

uivi

and

�x�y� =
(

n∑
i=1

�xi−yi�
2

)1/2

�

For convenience, we abbreviate �x�o� to �x�. Let � denote the angle between
u and v, then we have

�u�v� = �u� · �v� · cos��
Clearly two vectors are orthogonal to each other if and only if their inner
product is zero.
Now let us introduce two particular objects in En, namely

In =
{
x ∈ En � �xi� ≤ 1

2 for all i
}

and

Bn =
{
x ∈ En � �x� ≤ 1

}
�
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2 Introduction

A subset of En is called an n-dimensional unit cube if it is congruent to In, and
is called an n-dimensional unit ball if it is congruent to Bn. For convenience
of the forthcoming usage, we introduce another particular unit cube

In =
{
x ∈ En � 0 ≤ xi ≤ 1 for all i

}
�

In fact, In is a translate of In with a translative vector v = � 12 �
1
2 � � � � �

1
2 �.

In the n-dimensional Euclidean space, the volume v�X� of a set X is its
Lebesgue measure; that is

v�X�=
∫
En
��x�dx�

where ��x� is the characteristic function of the set. For the unit cube In and
the unit ball Bn, we have

v�In�= 1 (0.1)

and

v�Bn�= �
n
2

��n2 +1�
� (0.2)

where ��x� is the gamma function. For convenience, we will abbreviate the
volume of the n-dimensional unit ball to �n. In fact, �0�1� is the foundation
in defining the measure of a general set in En.

For two subsets C and D of En, we define their Minkowski sum as

C+D =
{
x+y � x ∈ C� y ∈D

}
�

Then the surface area s�X� of the set X is defined by

s�X�= lim
�→0

v�X+ �Bn�−v�X�

�
�

if the limit does exist. Intuitively speaking, the set X+�Bn is nothing else but
the result of putting a tight coat of thickness � on X. Applying this formula
to In and Bn, respectively, we can easily deduce

s�In�= 2n

and

s�Bn�= n ·�n�

A subset K of En is convex if

�x+ �1−��y ∈ K�
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Introduction 3

whenever both x and y belong to K and 0 < � < 1. In addition, if it is also
compact, we call it a convex body. For example, all balls, cubes, and simplices
are convex bodies. Let x and y be two points of the unit ball Bn and let �
be a number satisfying 0 < � < 1. Then, by the Cauchy–Schwarz inequality
we get

��x+ �1−��y�=
(

n∑
i=1

��xi+ �1−��yi�
2

)1/2

≤ �

(
n∑

i=1

x2i

)1/2

+ �1−��

(
n∑

i=1

y2i

)1/2

≤ 1�

Therefore, the unit ball is indeed convex. The convexity of the cubes and the
simplices can be deduced by similar routine arguments.
There is another important concept about convexity, which will be useful

in this book; namely, the convex hull of a given set X, which is defined by

conv�X�= {∑
�ixi � xi ∈ X� �i ≥ 0�

∑
�i = 1

}
�

In fact, by Carathéodory’s theorem, we can restrict each of the sum over only
n+ 1 terms. In particular, if card�X� is a finite number, then conv�X� is a
convex polytope. For example, both a cube and a simplex are polytopes and
they are the convex hulls of the sets of their vertices. Let H be a supporting
hyperplane of an n-dimensional polytope P. We call F = P ∩H a k-face of
P if it is k-dimensional. In particular, an �n−1�-face is called a facet and a
0-face is a vertex.
Let Z denote the ring of integers and let a1� a2� � � � �an be n linearly

independent vectors in En, then the set

	=
{

n∑
i=1

ziai � zi ∈ Z

}

is called an n-dimensional lattice and �a1�a2� � � � �an� is called a basis of the
lattice. It is easy to see that a lattice is a free abelian group under addition
and there are many different bases for a given lattice. For example

Zn =
{
�z1� z2� � � � � zn� � zi ∈ Z

}
is an n-dimensional lattice with a basis �e1� e2� � � � � en�. In addition, the set
�u1�u2� � � � �un� is a basis for Zn if and only if �uij� is a unimodular integral
matrix, where ui = �ui1� ui2� � � � � uin�.
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4 Introduction

To end this brief introduction, let us have a close look at the unit cube.
Clearly, an n-dimensional unit cube is a cylinder of height 1 over an �n−1�-
dimensional one. In other words

In = I1⊕ In−1� (0.3)

Therefore, it is easy to see that every k-face (0 ≤ k ≤ n− 1) of In is a
k-dimensional unit cube. Let f�n�k� denote the number of the k-faces of In.
By (0.3) we get

f�n�k�= 2f�n−1� k�+f�n−1� k−1�� (0.4)

Then, by induction on n and the identity(
n−1
k

)
+
(
n−1
k−1

)
=

(
n

k

)
�

it can be deduced from (0.4) that

f�n�k�= 2n−k

(
n

k

)
�

As a conclusion, when 0 ≤ k ≤ n− 1, the unit cube In has exactly 2n−k
(
n

k

)
k-faces, each of which is a k-dimensional unit cube.
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1
Cross sections

1.1 Introduction

Let us start with the two-dimensional case. Let H1 denote a straight line in
E2 passing through the origin o (a one-dimensional subspace of E2) and let
��I2

⋂
H1� denote the length of I2

⋂
H1. If, without loss of generality, H1

intersects the boundary of I2 at � 12 � y� and �− 1
2 �−y�, then �y� ≤ 1

2 and

��I2
⋂
H1�=√

1+4y2�

Therefore, for every H1, we have

1≤ ��I2
⋂
H1�≤√

2� (1.1)

where the lower bound is attained if and only if H1 is an axis of E2 and the
upper bound is attained if and only if H1 contains a pair of antipodal vertices
of I2.
In fact, the length of any segment contained in I2 is at most

√
2. This

statement can be deduced by the following argument. Let L be a segment
contained in I2. Since I2 is centrally symmetric, the segment L′, which is
symmetric to L, is also contained in I2. Then by convexity we get

1
2 �L+L′�⊂ I2�

Since L is parallel with L′ and 1
2 �L+L′� contains the origin o, by (1.1) we get

��L�= �� 12 �L+L′��≤√
2�

The three-dimensional case is more complicated and more interesting. First,
we study the one-dimensional sections. Without loss of generality, we assume
that H1 intersects the boundary of I3 at � 12 � y� z� and �− 1

2 �−y�−z�. Then we
have �y� ≤ 1

2 , �z� ≤ 1
2 , and

��I3
⋂
H1�=√

1+4y2+4z2�

5
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6 Cross sections

Therefore, for every H1, we get

1≤ ��I3
⋂
H1�≤√

3� (1.2)

where the lower bound is attained if and only if H1 is an axis of E3 and the
upper bound is attained if and only if H1 contains a pair of antipodal vertices
of I3. As with the two-dimensional case, by symmetry and convexity we can
deduce that the length of any segment contained in I3 is at most

√
3.

Next, let us discuss the two-dimensional cross sections of I3. Let u be a
point on the boundary of I3 and let H2 denote the two-dimensional subspace
�x � x ∈ E3� �x�u� = 0�. Since I3 has six facets and every edge of I3

⋂
H2

is an intersection of H2 with one of the facets, by symmetry it follows that
I3
⋂
H2 is either a parallelogram or a hexagon.

Let v2�I
3⋂H2� denote the area of I3

⋂
H2 and write

U1 =
{
u � u3 = 1

2 � u1 ≥ 0� u2 ≥ 0� u1+u2 ≤ 1
2

}
�

U2 =
{
u � u3 = 1

2 � u1 ≤ 1
2 � u2 ≤ 1

2 � u1+u2 >
1
2

}
�

and, for i= 1� 2� 3

Fi =
{
x ∈ E3 � xi = 1

2 � �xj� ≤ 1
2 for j �= i

}
�

Now, we estimate v2�I
3⋂H2� by considering two cases.

Case 1. u ∈ U1. Then the corresponding plane H2 does not intersect the
relative interior of F3 and therefore I

3⋂H2 is a parallelogram (see Figure 1.1).
By projecting I3

⋂
H2 on to F3 we get

v2�I
3⋂H2�=

√
0�52+u2

1+u2
2

0�5
v2�F3��

o

u
U1

F3v1

v2

v3

v4

Figure 1.1
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1.1 Introduction 7

o

u

F3

U2

v1
v2

v3

v4

v5

v6

Figure 1.2

Thus, by a routine argument we can deduce

1≤ v2�I
3⋂H2�≤√

2�

where the lower bound is attained if and only if u = �0�0� 1
2 � and the upper

bound is attained if and only if u= � 12 �0�
1
2 � or u= �0� 1

2 �
1
2 �.

Case 2. u ∈ U2. Then the corresponding plane H2 does intersect the relative
interior of every facet of I3 and therefore I3

⋂
H2 is a hexagon (see Figure 1.2).

Assume that H2 does intersect the boundary of F3 at two points v1 and v2.
By a routine computation we can determine that v1 = � 2u2−1

4u1
�− 1

2 �
1
2 � and v2 =

�− 1
2 �

2u1−1
4u2

� 1
2 �. Since the projection of I3

⋂
H2 to F3 has area 1− � 12 + 2u2−1

4u1
�

� 12 + 2u1−1
4u2

�, we get

v2�I
3⋂H2�=√

1+ �2u1�
2+ �2u2�

2

[
1−

(
1
2
+ 2u2−1

4u1

)(
1
2
+ 2u1−1

4u2

)]
�

For any fixed number c, it is easy to see that

1−
(
1
2
+ 2u2−1

4u1

)(
1
2
+ 2u1−1

4u2

)
= c

is a quadratic curve which is symmetric with respect to the straight line
u1 = u2. Therefore, in this case v2�I

3⋂H2� attains its minimum and maximum
on the boundary of U2 or on the line u1 = u2. By checking these subcases
we get √

3
2
< v2�I

3⋂H2� <
√
2�

As a conclusion, by symmetry, for every H2 we have

1≤ v2�I
3⋂H2�≤√

2� (1.3)
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8 Cross sections

where the lower bound can be attained if and only if u is in the direction of
an axis and the upper bound can be attained if and only if H2 contains two
pairs of antipodal vertices of I3.
In fact, the area of any planar section of I3 is at most

√
2. Let P be such a

section. Then the set P ′, which is symmetric to P with respect to o, is also a
planar section of I3. In addition, P ′ is parallel with P. Therefore, we have

o ∈ 1
2 �P+P ′�⊂ I3

and, by the Brunn–Minkowski inequality and (1.3)

v2�P�≤ v2�
1
2 �P+P ′��≤√

2�

These examples are relatively simple, at least they are manageable by
elementary methods. However, similar problems in higher dimensions are
much more challenging and fascinating. Let Hk denote a k-dimensional linear
subspace of En containing o and let vk�S� denote the k-dimensional volume
(measure) of a set S. The purpose of this chapter is to study the measure and
the structure of In

⋂
Hk.

1.2 Good’s conjecture

Based on the examples listed in the previous section, according to
Hensley (1979), Anton Good made the following conjecture about the lower
bound for vk�I

n
⋂
Hk�.

Good’s conjecture. Let k be an integer satisfying 1 ≤ k ≤ n−1. For every
k-dimensional subspace Hk of En, we have

vk�I
n⋂Hk�≥ 1�

This conjecture is simple-sounding in nature. However, we have to use
complicated analytic machinery to prove it. Let Bk denote the k-dimensional
ball with radius

r = �� k2 +1�
1
k

�
1
2

and centered at the origin of Ek. Then by (0.2) we have

vk�B
k�= �k · rk =

�
k
2

�� k2 +1�
· ��

k
2 +1�

�
k
2

= 1�

Let ��S�x� denote the characteristic function of a subset S of En. In 1979
J. D. Vaaler proved the following theorem.
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1.2 Good’s conjecture 9

Theorem 1.1 (Vaaler, 1979). Suppose that n1� n2� � � � � nj are positive inte-
gers, n= n1+n2+· · ·+nj , D = Bn1 ⊕Bn2 ⊕· · ·⊕Bnj ⊂ En, and A is a real
k×n matrix with rank k. Then we have∫

Ek
��D�xA�dx ≥ �AA′�− 1

2 � (1.4)

where A′ is the transpose of A.
As usual, X⊕ Y means the Cartesian product of X and Y . Let us take

n1 = n2 = · · · = nj = 1 (then j = n) and choose A in this theorem so that its
rows form an orthonormal basis for Hk in En. Then D is nothing else but the
unit cube In and∫

Ek
��In�xA�dx =

∫
Hk

��In�y�dy= vk�I
n⋂Hk��

On the other hand, by the assumption, we get

�AA′� = 1�

Therefore, Good’s conjecture follows as a corollary of Theorem 1.1.

Corollary 1.1 (Vaaler, 1979). For every k-dimensional subspace Hk of En,
we have

vk�I
n⋂Hk�≥ 1�

For a deep generalization of this result we refer to Meyer and Pajor (1988).
Vaaler’s theorem is very geometric. However, as one can imagine, its proof is
very analytical. To introduce the proof, let us start with a couple of definitions.

Definition 1.1. Let f�x� be a nonnegative function defined in En. If

f��x1+ �1−��x2�≥ f�x1�
�f�x2�

1−�

holds for every pair of points x1 and x2 in E
n and every � satisfying 0<�< 1,

then f�x� is said to be logconcave.

Let g�x� be a concave function defined in En and define f�x�= eg�x�. Since

g��x1+ �1−��x2�≥ �g�x1�+ �1−��g�x2�

holds for every pair of points x1 and x2 in En and every � with 0 < � < 1,
we have

f��x1+ �1−��x2�= eg��x1+�1−��x2�

≥ e�g�x1� · e�1−��g�x2�

= f�x1�
�f�x2�

1−��

Thus f�x� is logconcave in En.
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10 Cross sections

Definition 1.2. Let � be a probability measure on En. If

���K1+ �1−��K2�≥ ��K1�
���K2�

1−�

holds for every pair of open convex sets K1 and K2 in En and every � with
0< � < 1, then � is said to be logconcave in En.

As usual, we define the support of a probability measure � to be the smallest
closed subset S of En such that ��En \S�= 0. In other words, the support of
� is the set of all points x ∈ En such that

��rBn+x� > 0

for all r > 0. For convenience, it is denoted by supp���.
Comparing with the logconcave functions, it seems more difficult to get

examples for logconcave probability measures. In fact, as we can see from
the following lemma, they are closely related.

Lemma 1.1 (Borell, 1975 and Prékopa, 1973). Let � be a logconcave
probability measure on En and suppose that supp��� spans a k-dimensional
subspace Hk of En. Then there is a logconcave probability density function
f�x� defined on Hk such that d� = fdvk, where vk is the k-dimensional
Lebesgue measure on Hk. On the other hand, for any logconcave probability
density function f�x� defined on a k-dimensional subspace Hk in En, the
probability measure defined by d�= fdvk is logconcave.

The first part of this lemma was proved by C. Borell, and the second part
was proved by A. Prékopa. Both this result and the next lemma are intuitively
imaginable. However, like many results in measure theory, their proofs are
very complicated.

Proof (A sketch). Let x and y be two distinct points in Hk and let � be a
number satisfying 0 < � < 1. Since � is a logconcave probability measure
with a density function f�x�

�
(
�Bk+�x+ �1−��y

)≥ �
(
�Bk+x

)�
�
(
�Bk+y

)1−�

holds for all sufficiently small �. Therefore, we can deduce

f��x+ �1−��y�≥ f�x��f�y�1−��

which means that f�x� is logconcave.
To prove the second part, we start with a basic inequality (see Prékopa, 1971

for the details). If g1�x�, g2�x�, and g�x� are nonnegative Borel measurable
functions satisfying

g�z�= sup
x+y=2z

g1�x� g2�y��
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