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Introduction

Phase transitions are defined, and the concepts of order parameter and
spontaneously broken symmetry are discussed. Simple models for mag-
netic phase transitions are introduced, together with some experimental
examples. Critical exponents and the notion of universality are defined,
and the consequences of the scaling assumptions are derived.

1.1 Phase transitions and order parameters

It is a fact of everyday experience that matter in thermodynamic equilibrium
exists in different macroscopic phases. Indeed, it is difficult to imagine life
on Earth without all three phases of water. A typical sample of matter, for
example, has the temperature–pressure phase diagram presented in Fig. 1.1:
by changing either of the two parameters the system may be brought into a
solid, liquid, or gas phase. The change of phase may be gradual or abrupt. In
the latter case, the phase transition takes place at well defined values of the
parameters that determine the phase boundary.

Phase transitions are defined as points in the parameter space where the
thermodynamic potential becomes non-analytic. Such a non-analyticity can
arise only in the thermodynamic limit, when the size of the system is assumed
to be infinite. In a finite system the partition function of any system is a
finite sum of analytic functions of its parameters, and is therefore always
analytic. A sharp phase transition is thus a mathematical idealization, albeit
one that describes the reality extremely well. Macroscopic systems typically
contain ∼ 1023 degrees of freedom, and as such are very close to being in the
thermodynamic limit. The phase boundaries in Fig. 1.1, for example, for this
reason represent reproducible physical quantities.
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Figure 1.1 Temperature–pressure phase diagram of a typical piece of
matter. All the phase transitions are discontinuous except at the critical
point (C).

P. Ehrenfest gave an early classification of phase transitions according
to the degree of the derivative of the thermodynamic potential with
respect to the tuning parameter that is exhibiting a discontinuity. We will
adhere to the simpler modern classification in which phase transitions may be
either continuous (second order) or discontinuous (first order). A continuous
phase transition is a change of phase of a macroscopic system in equilibrium
not accompanied by latent heat. Phase transitions that do involve latent heat,
like freezing of water for example, will be called first-order, or discontinu-
ous. Non-analytic properties of systems near a continuous phase transition
are called critical phenomena, and will be the main subject of this book. The
point in the phase diagram where a continuous phase transition takes place is
called a critical point.1

As the first step towards the understanding of phase transitions, it is useful
to define a physical quantity that would clearly distinguish between different
phases. Such an observable will be called the order parameter. The order
parameter for a given phase transition may not be unique, and its choice is
often dictated by its utility. For example, the liquid and gas phases may be
distinguished by their average density. The liquid and solid phases differ in
their densities as well, but obviously a more fundamental difference is that the
density is uniform in the liquid and spatially periodic in the solid. The order

1 Not all the quantities must change continuously near a critical point; in rare instances some may actu-
ally be discontinuous, like the superfluid density at the Kosterlitz–Thouless transition, discussed in
Chapter 6. Also, there are a few examples of a weak first-order transition preempting a critical point, as
in the type-I superconductors, which will also be considered here as critical phenomena in Chapter 4.
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1.2 Models: Ising, XY, Heisenberg 3

Table 1.1 Examples of phase transitions and the corresponding
order-parameters.

System Phase transition Order parameter

H2O, 4He, Fe liquid–solid shear modulus
Xe, Ne, N2, H2O liquid–gas density difference
Fe, Ni ferromagnet–paramagnet magnetization
RbMnF2, La2CuO4 antiferromagnet–paramagnet staggered magnetization
4He, 3He superfluid–normal liquid superfluid density
Al, Pb, YBa2Cu3O6.97 superconductor–metal superfluid density
Li, Rb, H Bose–Einstein condensation condensate

parameter for the solid may therefore be defined as the Fourier transform of
the density at some characteristic wavevector, so that it would be finite in the
solid and zero in the liquid phase. Yet another choice would be the resistance
to shear deformation, called the shear modulus, which is also finite only in
the solid phase. This, as it turns out, is a more general choice, since in two
dimensions a solid has a finite shear modulus while being of perfectly uniform
density.

Many different phase transitions occur in nature. A small sample together
with the appropriate order parameters is presented in Table 1.1. Some phase
transitions are familiar from everyday life, while others must appear rather
exotic. Nevertheless, there exists a coherent theoretical framework for detailed
understanding of a variety of phase transitions. This is the subject of the present
book.

1.2 Models: Ising, XY, Heisenberg

Before turning to the general theory of critical phenomena, it is useful to
consider a specific model that actually exhibits a phase transition. Consider
the partition function

Z =
∑

{si =±1,i=1,...,N }
e− E

kBT , (1.1)

with the energy of a configuration {s1, s2, . . . , sN } defined as

E = −J
∑
〈i, j〉

si s j − H
N∑

i=1

si . (1.2)
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Figure 1.2 Temperature–magnetic field phase diagram of a magnetic sys-
tem exhibiting a paramagnet–ferromagnet phase transition. The critical
point at T = Tc and H = 0 separates the ferromagnetic (m �= 0) and the
paramagnetic (m = 0) phases.

The discrete variables si = ±1 are defined on sites of a quadratic lattice, and
may be understood as elementary magnetic dipoles that could point in one of
the two directions. H then plays the role of an external magnetic field. The
coupling J > 0 favors the pairs of neighboring dipoles, denoted by the symbol
〈i, j〉, to point in the same direction. At low temperatures (T � J ), even if
H = 0, one may expect all the dipoles to point in the same direction, while
at high temperatures (T � J ) the interaction between the dipoles becomes
negligible, and consequently they will be completely randomly arranged. If
we define the magnetization per dipole

m = 〈s j 〉 = 1

Z

∑
{si =±1,i=1,...,N }

s j e
− E

kBT (1.3)

as the order parameter, one may expect a phase transition between the fer-
romagnetic phase m �= 0 and the paramagnetic phase m = 0, at H = 0 and
the temperature T = Tc. For H �= 0, in contrast, on average there will always
be more dipoles pointing in the direction of the field, and magnetization will
therefore be finite at all temperatures. The phase diagram of a ferromagnet is
thus as given schematically at Fig. 1.2. The partition function in Eq. (1.1) was
proposed by W. Lenz as the simplest model of ferromagnetism. The model
may also be used to describe the structural order–disorder transition in binary
alloys.

The “Ising model” in Eq. (1.1) can be solved exactly in one and two dimen-
sions, as done by E. Ising and L. Onsager, respectively. The solution in one
dimension is simple, but the magnetization turns out to vanish at all finite
temperatures, and there is actually no phase transition (see Problems 1.1 and
1.2). The reason for this is easy to understand. Assume that an infinite one-
dimensional array has all the dipoles pointing in the same direction. To flip
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1.2 Models: Ising, XY, Heisenberg 5

half of the dipoles costs the energy �E = 2J , since only one of a pair of
nearest neighbors needs to point in opposite directions. This pair, on the other
hand, can be chosen in N different ways, where N � 1 is the size of the
system. The increase in entropy in the state with half of the dipoles flipped
is therefore �S = kBT ln N . The free energy F = E − S of a large system
may therefore always be lowered by flipping half of the dipoles, even at an
infinitesimal temperature. The assumed ordered state is therefore unstable,
and the equilibrium magnetization will consequently vanish at T > 0. Finite
magnetization is thus possible only exactly at T = 0.

The above argument also suggests that the result of the competition between
the energy and the entropy may be different in higher dimensions. Indeed, a
more elaborate reasoning presented in Problem 1.3 was used by R. Peierls
to argue that the state with spontaneous magnetization at finite temperatures
should be possible in two dimensions. L. Onsager later succeeded in finding
the exact solution and showed that there is a continuous phase transition in
two dimensions at kBTc/J = 2.269. Furthermore, the spontaneous magneti-
zation near and below Tc is m ∼ (Tc − T )1/8, and the specific heat diverges as
C ∼ − ln |Tc − T |. The exact solution of the Ising model in two dimensions
was the first demonstration that the equilibrium statistical mechanics can in
principle lead to phase transitions. The solution, however, is of considerable
complexity and not readily generalizable to other cases, so we will not describe
it further here.

The Ising model in three dimensions has not been exactly solved at the time
of writing. Nevertheless, we know with certainty that it does have a critical
point, and even its quantitative characteristics are known with great accuracy.
This comes from the systematic application of the theory exposed in the
following chapters, as well as from numerical computations. The behavior
of the magnetization and the specific heat, however, are different from the
two-dimensional case. As may be suspected from the example of the Ising
model, the system’s dimensionality will in general play a crucial role in its
critical behavior. Today there exist other exactly solvable models, which are
often used as the testing ground for the general theory.

A notable feature of the Ising model is its global symmetry at H = 0
under the transformation si → −si at all sites. We will call this the Z2, or the
Ising, symmetry. This symmetry is obviously also present in the paramagnetic
phase with m = 0, since any two configurations that have all the dipoles
reversed enter the partition function with equal weight. In the ferromagnetic
phase, however, the magnetization points in a definite direction, and the Ising
symmetry is evidently broken. In the absence of an external magnetic field
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6 Introduction

there is nothing that explicitly breaks the symmetry in the Hamiltonian, yet, the
symmetry becomes broken spontaneously in the ordered phase. The direction
of magnetization depends then on the history of the system. Both directions
are equally probable, but once the direction has been randomly selected it
becomes extremely unlikely that a macroscopic number of dipoles will be
overturned by thermal fluctuations, so that the magnetization could change
its sign. This phenomenon, in different forms quite ubiquitous in nature, is
known as spontaneous symmetry breaking.

If the partition function for the Ising model is calculated by summing over
all configurations, magnetization will of course always vanish due to the
Z2 symmetry. To describe the ordered phase with positive magnetization we
must therefore restrict the space of configurations over which the summation
in the partition function is to be performed. This may be conveniently done
by calculating magnetization in a finite external magnetic field first, and then
by taking the limit of zero magnetic field after the thermodynamic limit has
been taken. The ordered phase will then end up having a finite magnetization
surviving the limit of zero field. This mathematical procedure should not be
understood as describing what literally occurs in the system, but only as a way
of obtaining the correct physical result within the formalism of equilibrium
statistical mechanics.

The actual process by which the direction of broken symmetry is selected
is rather different, and no weak true magnetic field is involved at all. Let
us define the dynamics of the Ising model in real time by letting the sys-
tem evolve through different configurations chosen randomly in accordance
with the Boltzmann distribution. We also require that a change from one
configuration to the other can involve only a finite number of dipoles. At
high temperatures the system will then explore the whole space of configura-
tions, which results in vanishing magnetization. As the temperature is lowered
those previously rare configurations of larger differences in numbers of up and
down dipoles become more probable, by being favored by the interaction. The
“time” it takes for the system to evolve from a configuration with a large block
of dipoles pointing up, for example, to its Z2 symmetric configuration also
takes a progressively longer time, since the evolution takes place by flipping
only a finite number of dipoles at a time, and each of these steps becomes
less likely at lower temperatures. In thermodynamic limit the “time” it would
take then for a macroscopic number of spins pointing up to get overturned
becomes exponentially large. When observed at time intervals of long but
finite length the macroscopic system thus exhibits a finite magnetization. The
direction of this magnetization, however, is obviously random and essentially
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1.2 Models: Ising, XY, Heisenberg 7

determined by the first configuration with a large enough imbalance of up and
down dipoles that occurs in the system’s evolution after the temperature was
lowered below Tc.

The Ising model in zero magnetic field is thus invariant under global trans-
formations belonging to the simplest discrete symmetry group Z2 = {1, −1}.
It is straightforward to generalize it to higher discrete symmetries, like
Z3 = {1, ei2π/3, ei4π/3}, which defines the family of so-called “clock mod-
els”. A more substantial generalization is to the case of continuous symmetry,
by allowing the dipoles of fixed magnitude to point arbitrarily in the plane
(the “XY model”), or in space (the “Heisenberg model”), while remaining
coupled ferromagnetically:

Z =
∫ N∏

i=1

(δ(|	si | − 1)dD	si )e
J

kBT

∑
〈i, j〉 	si ·	s j + 	H

kBT ·∑N
i=1 	si , (1.4)

where D = 2 for the XY, and D = 3 for the Heisenberg model. The symmetry
of the model, or equivalently, of the order parameter, will turn out to be another
decisive factor in its critical behavior.

We said nothing so far about the physical origin of the interaction between
dipoles that is responsible for magnetic ordering. It should not be understood
literally as the dipole–dipole interaction between spins of electrons in a solid,
which is several orders of magnitude too weak to yield the observed critical
temperatures of Tc ∼ 103 K . It is instead an effective interaction accounting
for the purely quantum mechanical exchange effect, and proportional to the
Coulomb repulsion between electrons. A detailed discussion can be found in
most books on quantum mechanics. Depending on the nature of electronic
wave functions the coupling J may be either positive or negative, leading to
ferromagnetic or antiferromagnetic orderings. In the latter case the dipoles on
the neighboring sites point in the opposite directions. None of these complica-
tions matter, however, for the critical behavior of magnets near Tc: both J > 0
and J < 0 lead to spontaneous breaking of the same rotational symmetry, and
turn out to exhibit the same critical behavior. The quantum mechanical nature
of the elementary dipoles may be shown also to be irrelevant near Tc. This
is what allows one to consider the grossly simplified classical models that
we introduced. The only real novelty comes from permitting the sign of the
interaction J to be random from one of a pair of neighbors to the other. This
situation arises in certain alloys, such as CuMn. The low-temperature phase
of these so-called “spin-glasses” has the dipoles frozen in time, but pointing
randomly in space. Even the definition of an order parameter in this case
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8 Introduction

becomes a rather subtle matter. This, however, lies beyond the scope of the
present book.

Problem 1.1 Compute the free energy of the Ising model in one dimension
in zero magnetic field.

Solution Let us define the link variables ti = si si+1 = ±1, with i =
1, 2, . . . , N − 1. Each configuration of link variables corresponds to a unique,
up to an overall sign, configuration of the dipoles. The partition function can
therefore be written as

Z = 2
∑

{ti =±1,i=1,...,N−1}
e

J
kBT

∑N−1
i=1 ti = 2

[
2 cosh

J

kBT

]N−1

,

since different link variables decouple and factorize the partition function. The
free energy F = −kBT ln Z in the thermodynamic limit N → ∞ is therefore

F = −NkBT ln

[
2 cosh

J

kBT

]
,

and evidently an analytic function of temperature.

Problem 1.2 Find the magnetization in the Ising model in one dimension
with periodic boundary condition.

Solution To compute the magnetization m per dipole one needs the free
energy in the external magnetic field so that

m = − 1

N

∂ F

∂ H
.

With periodic boundary condition sN = s1 the partition function becomes

Z =
∑

{si =±1,i=1,...,N−1}
e

J
kBT

∑N−1
i=1 si si+1+ H

kBT

∑N−1
i=1 si = Tr[M̂ N−1],

where M̂ is a 2 × 2 matrix with the matrix elements

Mss ′ = e
J

kBT ss ′+ H
2kBT (s+s ′)

.

The partition function is therefore Z = λN−1
+ + λN−1

− , where

λ± = e
J

kBT

(
cosh

H

kBT
±

(
sinh2 H

kBT
+ e− 4J

kBT

)1/2
)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-85452-8 - A Modern Approach to Critical Phenomena
Igor Herbut
Excerpt
More information

http://www.cambridge.org/0521854520
http://www.cambridge.org
http://www.cambridge.org


1.2 Models: Ising, XY, Heisenberg 9

Figure 1.3 An example of a configuration of boundaries dividing the
regions of positive and negative dipoles.

are the eigenvalues of the matrix M̂ . Since λ+ > λ−, in the thermodynamic
limit F = −NkBT ln λ+. When H = 0 the free energy reduces to the one
calculated in the previous problem. Finally, in the limit H → 0 one finds
m = 0 for all T �= 0, and m = 1 at T = 0.

Problem 1.3* Formulate a qualitative argument in favor of the Ising model
in two dimensions having Tc > 0.

Solution Any configuration can be described by drawing boundaries separat-
ing the regions of positive from negative dipoles, as for instance in Fig. 1.3.
The boundary determines the configuration uniquely, up to an overall sign
reversal. Measured from the energy of the perfectly ordered configuration,
the energy is then E = 2L J , where L is the total length of all boundaries, in
units of lattice spacing. The partition function may then be written as

Z = 2
∞∑

L=0

GLe− 2J L
kBT ,

where GL is the number of ways in which we can draw boundaries of total
length L . In doing this, however, one must obey the following rules: (a) no
boundary may pass the same segment more than once, (b) no two boundaries
can overlap, (c) each boundary is either closed, or starts and ends on the
edges of the system, and (d) if two boundaries intersect, one can draw the line
for each using either branch beyond the intersection, with all the alternatives
counted only once.

Obviously, these conditions make the exact computation of the number GL

a major problem. A qualitative estimate may be obtained by ignoring them.
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10 Introduction

Without any restrictions, one can draw boundaries from any point, and the
number of ways to have it of length L would be 4L . The partition function for
the boundaries from the single point would be

Z ′ =
∞∑

L=0

4Le− 2J L
kBT = 1

1 − 4e− 2J
kBT

,

assuming 4e− 2J
kBT <1. The average length of boundaries starting from a single

point is then

〈L〉 =
∑∞

L=0 L4Le− 2J L
kBT

Z ′ = 4e− 2J
kBT

1 − 4e− 2J
kBT

.

How many overturned dipoles will these boundaries enclose? Here we may
neglect the open boundaries that start and terminate at the edges, since their
number is ∼ N 1/2, whereas the number of closed boundaries is ∼ N . A closed
boundary can enclose at most (L/4)2 dipoles, so the average number of over-
turned dipoles is less than

N

(
e− 2J

kBT

1 − 4e− 2J
kBT

)2

.

When this number is smaller than N/2 the system will have a finite magneti-
zation. This is the case for kBT < 1.184J . Since the argument overestimates
the effect of thermal fluctuations we may expect that

kBTc > 1.18J

for the Ising model in two dimensions. This is in accord with the exact result
quoted in the text. With few modifications the argument may in fact be made
quite rigorous and then used to prove the existence of a phase transition in the
two-dimensional Ising model.

1.3 Universality and critical exponents

It must appear rather bizarre that physicists would devote their time to the
study of continuous phase transitions. After all, most changes of phases in
nature are in fact discontinuous. Take, for example, the phase diagram in
Fig. 1.1: all the lines represent first-order phase transitions accompanied by
latent heat, and it is only at the critical point C that the transition between
the liquid and the gas phase is actually continuous. So why is that single
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