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Langlands Correspondence for Loop Groups

The Langlands Program was conceived initially as a bridge between Number Theory

and Automorphic Representations, and has now expanded into such areas as Geometry

and Quantum Field Theory, weaving together seemingly unrelated disciplines into a

web of tantalizing conjectures. This book provides a new chapter in this grand project.

It develops the geometric Langlands Correspondence for Loop Groups, a new

approach, from a unique perspective offered by affine Kac–Moody algebras. The

theory offers fresh insights into the world of Langlands dualities, with many

applications to Representation Theory of Infinite-dimensional Algebras, and Quantum

Field Theory. This introductory text builds the theory from scratch, with all necessary

concepts defined and the essential results proved along the way. Based on courses

taught by the author at Berkeley, the book provides many open problems which could

form the basis for future research, and is accessible to advanced undergraduate

students and beginning graduate students.
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Preface

The Langlands Program has emerged in recent years as a blueprint for a Grand

Unified Theory of Mathematics. Conceived initially as a bridge between Num-

ber Theory and Automorphic Representations, it has now expanded into such

areas as Geometry and Quantum Field Theory, weaving together seemingly

unrelated disciplines into a web of tantalizing conjectures. The Langlands

correspondence manifests itself in a variety of ways in these diverse areas

of mathematics and physics, but the same salient features, such as the ap-

pearance of the Langlands dual group, are always present. This points to

something deeply mysterious and elusive, and that is what makes this corre-

spondence so fascinating.

One of the prevalent themes in the Langlands Program is the interplay

between the local and global pictures. In the context of Number Theory, for

example, “global” refers to a number field (a finite extension of the field of

rational numbers) and its Galois group, while “local” means a local field, such

as the field of p-adic numbers, together with its Galois group. On the other

side of the Langlands correspondence we have, in the global case, automorphic

representations, and, in the local case, representations of a reductive group,

such as GLn, over the local field.

In the geometric context the cast of characters changes: on the Galois side

we now have vector bundles with flat connection on a complex Riemann sur-

face X in the global case, and on the punctured disc D× around a point of

X in the local case. The definition of the objects on the other side of the

geometric Langlands correspondence is more subtle. It is relatively well un-

derstood (after works of A. Beilinson, V. Drinfeld, G. Laumon and others)

in the special case when the flat connection on our bundle has no singulari-

ties. Then the corresponding objects are the so-called “Hecke eigensheaves”

on the moduli spaces of vector bundles on X. These are the geometric ana-

logues of unramified automorphic functions. The unramified global geometric

Langlands correspondence is then supposed to assign to a flat connection on

our bundle (without singularities) a Hecke eigensheaf. (This is discussed in

xi
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xii Preface

a recent review [F7], among other places, where we refer the reader for more

details.)

However, in the more general case of connections with ramification, that

is, with singularities, the geometric Langlands correspondence is much more

mysterious, both in the local and in the global case. Actually, the impetus

now shifts more to the local story. This is because the flat connections that

we consider have finitely many singular points on our Riemann surface. The

global ramified correspondence is largely determined by what happens on the

punctured discs around those points, which is in the realm of the local cor-

respondence. So the question really becomes: what is the geometric analogue

of the local Langlands correspondence?

Now, the classical local Langlands correspondence relates representations of

p-adic groups and Galois representations. In the geometric version we should

replace a p-adic group by the (formal) loop group G((t)), the group of maps

from the (formal) punctured disc D× to a complex reductive algebraic group

G. Galois representations should be replaced by vector bundles on D× with

a flat connection. These are the local geometric Langlands parameters. To

each of them we should be able to attach a representation of the formal loop

group.

Recently, Dennis Gaitsgory and I have made a general proposal describing

these representations of loop groups. An important new element in our pro-

posal is that, in contrast to the classical correspondence, the loop group now

acts on categories rather than vector spaces. Thus, the Langlands correspon-

dence for loop groups is categorical: we associate categorical representations

of G((t)) to local Langlands parameters. We have proposed how to construct

these categories using representations of the affine Kac–Moody algebra ĝ,

which is a central extension of the loop Lie algebra g((t)). Therefore the lo-

cal geometric Langlands correspondence appears as the result of a successful

marriage of the Langlands philosophy and the representation theory of affine

Kac–Moody algebras.

Affine Kac–Moody algebras have a parameter, called the level. For a special

value of this parameter, called the critical level, the completed enveloping

algebra of an affine Kac–Moody algebra acquires an unusually large center.

In 1991, Boris Feigin and I showed that this center is canonically isomorphic

to the algebra of functions on the space of opers on D×. Opers are bundles on

D× with a flat connection and an additional datum (as defined by Drinfeld–

Sokolov and Beilinson–Drinfeld). Remarkably, their structure group turns out

to be not G, but the Langlands dual group LG, in agreement with the general

Langlands philosophy. This is the central result, which implies that the same

salient features permeate both the representation theory of p-adic groups and

the (categorical) representation theory of loop groups.

This result had been conjectured by V. Drinfeld, and it plays an important

role in his and A. Beilinson’s approach to the global geometric Langlands
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correspondence, via quantization of the Hitchin systems. The isomorphism

between the center and functions on opers means that the category of rep-

resentations of ĝ of critical level “lives” over the space of LG-opers on D×,

and the loop group G((t)) acts “fiberwise” on this category. In a nutshell, the

proposal of Gaitsgory and myself is that the “fibers” of this category are the

sought-after categorical representations of G((t)) corresponding to the local

Langlands parameters underlying the LG-opers. This has many non-trivial

consequences, both for the local and global geometric Langlands correspon-

dence, and for the representation theory of ĝ. We hope that further study of

these categories will give us new clues and insights into the mysteries of the

Langlands correspondence.†

The goal of this book is to present a systematic and self-contained intro-

duction to the local geometric Langlands correspondence for loop groups and

the related representation theory of affine Kac–Moody algebras. It covers the

research done in this area over the last twenty years and is partially based on

the graduate courses that I have taught at UC Berkeley in 2002 and 2004. In

the book, the entire theory is built from scratch, with all necessary concepts

defined and all essential results proved along the way. We introduce such

concepts as the Weil-Deligne group, Langlands dual group, affine Kac–Moody

algebras, vertex algebras, jet schemes, opers, Miura opers, screening opera-

tors, etc., and illustrate them by detailed examples. In particular, many of

the results are first explained in the simplest case of SL2. Practically no back-

ground beyond standard college algebra is required from the reader (except

possibly in the last chapter); we even explain some standard notions, such as

universal enveloping algebras, in the Appendix.

In the opening chapter, we present a pedagogical overview of the classical

Langlands correspondence and a motivated step-by-step passage to the geo-

metric setting. This leads us to the study of affine Kac–Moody algebras and

in particular the center of the completed enveloping algebra. We then review

in great detail the construction of a series of representations of affine Kac–

Moody algebras, called Wakimoto modules. They were defined by Feigin and

myself in the late 1980s following the work of M. Wakimoto. These modules

give us an effective tool for developing the representation theory of affine alge-

bras. In particular, they are crucial in our proof of the isomorphism between

the spectrum of the center and opers. A detailed exposition of the Wakimoto

modules and the proof of this isomorphism constitute the main part of this

book. These results allow us to establish a deep link between the representa-

tion theory of affine Kac–Moody algebras of critical level and the geometry

of opers. In the closing chapter, we review the results and conjectures of

† We note that A. Beilinson has another proposal [Bei] for the local geometric Langlands
correspondence, using representations of affine Kac–Moody algebras of integral levels less
than critical. It would be interesting to understand the connection between his proposal
and ours.
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Gaitsgory and myself describing the representation categories associated to

opers in the framework of the Langlands correspondence. I also discuss the

implications of this for the global geometric Langlands correspondence. These

are only the first steps of a new theory, which we hope will ultimately help us

reveal the secrets of Langlands duality.

Contents

Here is a more detailed description of the contents of this book.

Chapter 1 is the introduction to the subject matter of this book. We begin

by giving an overview of the local and global Langlands correspondence in

the classical setting. Since the global case is discussed in great detail in

my recent review [F7], I concentrate here mostly on the local case. Next,

I explain what changes one needs to make in order to transport the local

Langlands correspondence to the realm of geometry and the representation

theory of loop groups. I give a pedagogical account of Galois groups, principal

bundles with connections and central extensions, among other topics. This

discussion leads us to the following question: how to attach to each local

geometric Langlands parameter an abelian category equipped with an action

of the formal loop group?

In Chapter 2 we take up this question in the context of the representation

theory of affine Kac–Moody algebras. This motivates us to study the center of

the completed enveloping algebra of ĝ. First, we do that by elementary means,

but very quickly we realize that we need a more sophisticated technique. This

technique is the theory of vertex algebras. We give a crash course on vertex

algebras (following [FB]), summarizing all necessary concepts and results.

Armed with these results, we begin in Chapter 3 a more in-depth study

of the center of the completed enveloping algebra of ĝ at the critical level

(we find that the center is trivial away from the critical level). We describe

the center in the case of the simplest affine Kac–Moody algebra ŝl2 and the

quasi-classical analogue of the center for an arbitrary ĝ.

In Chapter 4 we introduce the key geometric concept of opers, introduced

originally in [DS, BD1]. We state the main result, due to Feigin and myself

[FF6, F4], that the center at the critical level, corresponding to ĝ, is isomorphic

to the algebra of functions on LG-opers.

In order to prove this result, we need to develop the theory of Wakimoto

modules. This is done in Chapters 5 and 6, following [F4]. We start by

explaining the analogous theory for finite-dimensional simple Lie algebras,

which serves as a prototype for our construction. Then we explain the non-

trivial elements of the infinite-dimensional case, such as the cohomological

obstruction to realizing a loop algebra in the algebra of differential operators

on a loop space. This leads to a conceptual explanation of the non-triviality

of the critical level. In Chapter 6 we complete the construction of Wakimoto
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modules, both at the critical and non-critical levels. We prove some useful

results on representations of affine Kac–Moody algebras, such as the Kac-

Kazhdan conjecture.

Having built the theory of Wakimoto modules, we are ready to tackle the

isomorphism between the center and the algebra of functions on opers. At

the beginning of Chapter 7 we give a detailed overview of the proof of this

isomorphism. In the rest of Chapter 7 we introduce an important class of

intertwining operators between Wakimoto modules called the screening oper-

ators. We use these operators and some results on associated graded algebras

in Chapter 8 to complete the proof of our main result and to identify the cen-

ter with functions on opers (here we follow [F4]). In particular, we clarify the

origins of the appearance of the Langlands dual group in this isomorphism,

tracing it back to a certain duality between vertex algebras known as the W-

algebras. At the end of the chapter we discuss the vertex Poisson structure

on the center and identify the action of the center on Wakimoto modules with

the Miura transformation.

In Chapter 9 we undertake a more in-depth study of representations of affine

Kac–Moody algebras of critical level. We first introduce (following [BD1] and

[FG2]) certain subspaces of the space of opers on D×: opers with regular

singularities and nilpotent opers, and explain the interrelations between them.

We then discuss Miura opers with regular singularities and the action of the

Miura transformation on them, following [FG2]. Finally, we describe the

results of [FG2] and [FG6] on the algebras of endomorphisms of the Verma

modules and the Weyl modules of critical level.

In Chapter 10 we bring together the results of this book to explain the

proposal for the local geometric Langlands correspondence made by Gaitsgory

and myself. We review the results and conjectures of our works [FG1]–[FG6],

emphasizing the analogies between the geometric and the classical Langlands

correspondence. We discuss in detail the interplay between opers and local

systems. We then consider the simplest local system; namely, the trivial one.

The corresponding categorical representations of G((t)) are the analogues of

unramified representations of p-adic groups. Already in this case we will

see rather non-trivial elements, which emulate the corresponding elements of

the classical theory and at the same time generalize them in a non-trivial

way. The next, and considerably more complicated, example is that of local

systems on D× with regular singularity and unipotent monodromy. These are

the analogues of the tamely ramified representations of the Galois group of

a p-adic field. The corresponding categories turn out to be closely related to

categories of quasicoherent sheaves on the Springer fibers, which are algebraic

subvarieties of the flag variety of the Langlands dual group. We summarize

the conjectures and results of [FG2] concerning these categories and illustrate

them by explicit computations in the case of ŝl2. We also formulate some
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open problems in this direction. Finally, we discuss the implications of this

approach for the global Langlands correspondence.
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