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Local Langlands correspondence

In this introductory chapter we explain in detail what we mean by “local Lang-

lands correspondence for loop groups.” We begin by giving a brief overview

of the local Langlands correspondence for reductive groups over local non-

archimedian fields, such as Fq((t)), the field of Laurent power series over a

finite field Fq. We wish to understand an analogue of this correspondence

when Fq is replaced by the field C of complex numbers. The role of the reduc-

tive group will then be played by the formal loop group G(C((t))). We discuss,

following [FG2], how the setup of the Langlands correspondence should change

in this case. This discussion will naturally lead us to categories of represen-

tations of the corresponding affine Kac–Moody algebra ĝ equipped with an

action of G(C((t))), the subject that we will pursue in the rest of this book.

1.1 The classical theory

The local Langlands correspondence relates smooth representations of reduc-

tive algebraic groups over local fields and representations of the Galois group

of this field. We start out by defining these objects and explaining the main

features of this correspondence. As the material of this section serves moti-

vational purposes, we will only mention those aspects of this story that are

most relevant for us. For a more detailed treatment, we refer the reader to

the informative surveys [V, Ku] and references therein.

1.1.1 Local non-archimedian fields

Let F be a local non-archimedian field. In other words, F is the field Qp of

p-adic numbers, or a finite extension of Qp, or F is the field Fq((t)) of formal

Laurent power series with coefficients in Fq, the finite field with q elements.

We recall that for any q of the form pn, where p is a prime, there is a unique,

up to isomorphism, finite field of characteristic p with q elements. An element
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2 Local Langlands correspondence

of Fq((t)) is an expression of the form

∑

n∈Z

antn, an ∈ Fq,

such that an = 0 for all n less than some integer N . In other words, these

are power series infinite in the positive direction and finite in the negative

direction. Recall that a p-adic number may also be represented by a series
∑

n∈Z

bnpn, bn ∈ {0, 1, . . . , p − 1},

such that bn = 0 for all n less than some integer N . We see that elements of

Qp look similar to elements of Fp((t)). Both fields are complete with respect

to the topology defined by the norm taking value α−N on the above series if

aN �= 0 and an = 0 for all n < N , where α is a fixed positive real number

between 0 and 1. But the laws of addition and multiplication in the two fields

are different: with “carry” to the next digit in the case of Qp, but without

“carry” in the case of Fp((t)). In particular, Qp has characteristic 0, while

Fq((t)) has characteristic p. More generally, elements of a finite extension of

Qp look similar to elements of Fq((t)) for some q = pn, but, again, the rules of

addition and multiplication, as well as their characteristics, are different.

1.1.2 Smooth representations of GLn(F )

Now consider the group GLn(F ), where F is a local non-archimedian field. A

representation of GLn(F ) on a complex vector space V is a homomorphism

π : GLn(F ) → EndV such that π(gh) = π(g)π(h) and π(1) = Id. Define a

topology on GLn(F ) by stipulating that the base of open neighborhoods of

1 ∈ GLn(F ) is formed by the congruence subgroups KN , N ∈ Z+. In the case

when F = Fq((t)), the group KN is defined as follows:

KN = {g ∈ GLn(Fq[[t]]) | g ≡ 1 mod tN},

and for F = Qp it is defined in a similar way. For each v ∈ V we obtain a map

π(·)v : GLn(F ) → V, g �→ π(g)v. A representation (V, π) is called smooth if

the map π(·)v is continuous for each v, where we give V the discrete topology.

In other words, V is smooth if for any vector v ∈ V there exists N ∈ Z+ such

that

π(g)v = v, ∀g ∈ KN .

We are interested in describing the equivalence classes of irreducible smooth

representations of GLn(F ). Surprisingly, those turn out to be related to

objects of a different kind: n-dimensional representations of the Galois group

of F .
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1.1 The classical theory 3

1.1.3 The Galois group

Suppose that F is a subfield of K. Then the Galois group Gal(K/F ) consists

of all automorphisms σ of the field K such that σ(y) = y for all y ∈ F .

Let F be a field. The algebraic closure of F is a field obtained by adjoining

to F the roots of all polynomials with coefficients in F . In the case when

F = Fq((t)) some of the extensions of F may be non-separable. An example of

such an extension is the field Fq((t
1/p)). The polynomial defining this extension

is xp − t, but in Fq((t
1/p)) it has multiple roots because

xp − (t1/p)p = (x − t1/p)p.

The Galois group Gal(Fq((t
1/p)), Fq((t))) of this extension is trivial, even though

the degree of the extension is p.

This extension should be contrasted to the separable extensions Fq((t
1/n)),

where n is not divisible by p. This extension is defined by the polynomial

xn − t, which now has no multiple roots:

xn − t =

n−1∏

i=0

(x − ζit1/n),

where ζ is a primitive nth root of unity in the algebraic closure of Fq. The

corresponding Galois group is identified with the group (Z/nZ)×, the group

of invertible elements of Z/nZ.

We wish to avoid the non-separable extensions, because they do not con-

tribute to the Galois group. (There are no non-separable extensions if F has

characteristic zero, e.g., for F = Qp.) Let F be the maximal separable ex-

tension inside a given algebraic closure of F . It is uniquely defined up to

isomorphism.

Let Gal(F/F ) be the absolute Galois group of F . Its elements are the

automorphisms σ of the field F such that σ(y) = y for all y ∈ F .

To gain some experience with Galois groups, let us look at the Galois group

Gal(Fq/Fq). Here Fq is the algebraic closure of Fq, which can be defined as

the inductive limit of the fields FqN , N ∈ Z+, with respect to the natural

embeddings FqN →֒ FqM for N dividing M . Therefore Gal(Fq/Fq) is isomor-

phic to the inverse limit of the Galois groups Gal(FqN /Fq) with respect to the

natural surjections

Gal(FqM /Fq) ։ Gal(FqN /Fq), ∀N |M.

The group Gal(FqN /Fq) is easy to describe: it is generated by the Frobenius

automorphism x �→ xq (note that it stabilizes Fq), which has order N , so

that Gal(FqN /Fq) ≃ Z/NZ. Therefore we find that

Gal(Fq/Fq) ≃ Ẑ
def
= lim

←−

Z/NZ,
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4 Local Langlands correspondence

where we have the surjective maps Z/MZ ։ Z/NZ for N |M . The group Ẑ

contains Z as a subgroup.

Let F = Fq((t)). Observe that we have a natural map Gal(F/F ) →

Gal(Fq/Fq) obtained by applying an automorphism of F to Fq ⊂ F . A similar

map also exists when F has characteristic 0. Let WF be the preimage of the

subgroup Z ⊂ Gal(Fq/Fq). This is the Weil group of F . Let ν be the cor-

responding homomorphism WF → Z. Let W ′

F = WF ⋉ C be the semi-direct

product of WF and the one-dimensional complex additive group C, where WF

acts on C by the formula

σxσ−1 = qν(σ)x, σ ∈ WF , x ∈ C. (1.1.1)

This is the Weil–Deligne group of F .

An n-dimensional complex representation of W ′

F is by definition a homo-

morphism ρ′ : W ′

F → GLn(C), which may be described as a pair (ρ, u),

where ρ is an n-dimensional representation of WF , u ∈ gln(C), and we have

ρ(σ)uρ(σ)−1 = qν(σ)u for all σ ∈ WF . The group WF is topological, with re-

spect to the Krull topology (in which the open neighborhoods of the identity

are the normal subgroups of finite index). The representation (ρ, u) is called

admissible if ρ is continuous (equivalently, factors through a finite quotient

of WF ) and semisimple, and u is a nilpotent element of gln(C).

The group W ′

F was introduced by P. Deligne [De2]. The idea is that by

adjoining the nilpotent element u to WF we obtain a group whose complex

admissible representations are the same as continuous ℓ-adic representations

of WF (where ℓ �= p is a prime).

1.1.4 The local Langlands correspondence for GLn

Now we are ready to state the local Langlands correspondence for the group

GLn over a local non-archimedian field F . It is a bijection between two differ-

ent sorts of data. One is the set of equivalence classes of irreducible smooth

representations of GLn(F ). The other is the set of equivalence classes of n-

dimensional admissible representations of W ′

F . We represent it schematically

as follows:

n-dimensional admissible

representations of W ′

F

⇐⇒
irreducible smooth

representations of GLn(F )

This correspondence is supposed to satisfy an overdetermined system of

constraints which we will not recall here (see, e.g., [Ku]).

The local Langlands correspondence for GLn is a theorem. In the case

when F = Fq((t)) it has been proved in [LRS], and when F = Qp or its finite

extension in [HT] and also in [He]. We refer the readers to these papers and

to the review [C] for more details.
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1.1 The classical theory 5

Despite an enormous effort made in the last two decades to understand

it, the local Langlands correspondence still remains a mystery. We do know

that the above bijection exists, but we cannot yet explain in a completely

satisfactory way why it exists. We do not know the deep underlying reasons

that make such a correspondence possible. One way to try to understand it

is to see how general it is. In the next section we will discuss one possible

generalization of this correspondence, where we replace the group GLn by an

arbitrary reductive algebraic group defined over F .

1.1.5 Generalization to other reductive groups

Let us replace the group GLn by an arbitrary connected reductive group G

over a local non-archimedian field F . The group G(F ) is also a topological

group, and there is a notion of smooth representation of G(F ) on a complex

vector space. It is natural to ask whether we can relate irreducible smooth

representations of G(F ) to representations of the Weil–Deligne group W ′

F
.

This question is addressed in the general local Langlands conjectures. It

would take us too far afield to try to give here a precise formulation of these

conjectures. So we will only indicate some of the objects involved, referring

the reader to the articles [V, Ku], where these conjectures are described in

great detail.

Recall that in the case when G = GLn the irreducible smooth represen-

tations are parametrized by admissible homomorphisms W ′

F
→ GLn(C). In

the case of a general reductive group G, the representations are conjecturally

parametrized by admissible homomorphisms from W ′

F
to the so-called Lang-

lands dual group LG, which is defined over C.

In order to explain the notion of the Langlands dual group, consider first

the group G over the closure F of the field F . All maximal tori T of this

group are conjugate to each other and are necessarily split, i.e., we have an

isomorphism T (F ) ≃ (F
×

)n. For example, in the case of GLn, all maximal

tori are conjugate to the subgroup of diagonal matrices. We associate to T (F )

two lattices: the weight lattice X∗(T ) of homomorphisms T (F ) → F
×

and

the coweight lattice X∗(T ) of homomorphisms F
×

→ T (F ). They contain

the sets of roots ∆ ⊂ X∗(T ) and coroots ∆∨
⊂ X∗(T ), respectively. The

quadruple (X∗(T ), X∗(T ),∆, ∆∨) is called the root data for G over F . The

root data determines G up to an isomorphism defined over F . The choice of

a Borel subgroup B(F ) containing T (F ) is equivalent to a choice of a basis

in ∆; namely, the set of simple roots ∆s, and the corresponding basis ∆∨

s
in

∆∨.

Now given γ ∈ Gal(F/F ), there is g ∈ G(F ) such that g(γ(T (F ))g−1 =

T (F ) and g(γ(B(F ))g−1 = B(F ). Then g gives rise to an automorphism of
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6 Local Langlands correspondence

the based root data (X∗(T ), X∗(T ),∆s,∆
∨
s ). Thus, we obtain an action of

Gal(F/F ) on the based root data.

Let us now exchange the lattices of weights and coweights and the sets of

simple roots and coroots. Then we obtain the based root data

(X∗(T ), X∗(T ),∆∨
s ,∆s)

of a reductive algebraic group over C, which is denoted by LG◦. For instance,

the group GLn is self-dual, the dual of SO2n+1 is Sp2n, the dual of Sp2n is

SO2n+1, and SO2n is self-dual.

The action of Gal(F/F ) on the based root data gives rise to its action on
LG◦. The semi-direct product LG = Gal(F/F )⋉LG◦ is called the Langlands

dual group of G.

The local Langlands correspondence for the group G(F ) relates the equiva-

lence classes of irreducible smooth representations of G(F ) to the equivalence

classes of admissible homomorphisms W ′
F → LG. However, in general this

correspondence is much more subtle than in the case of GLn. In particular,

we need to consider simultaneously representations of all inner forms of G,

and a homomorphism W ′
F → LG corresponds in general not to a single ir-

reducible representation of G(F ), but to a finite set of representations called

an L-packet. To distinguish between them, we need additional data (see [V]

for more details; some examples are presented in Section 10.4.1 below). But

in the first approximation we can say that the essence of the local Langlands

correspondence is that

irreducible smooth representations of G(F ) are parameterized

in terms of admissible homomorphisms W ′
F → LG.

1.1.6 On the global Langlands correspondence

We close this section with a brief discussion of the global Langlands corre-

spondence and its connection to the local one. We will return to this subject

in Section 10.5.

Let X be a smooth projective curve over Fq. Denote by F the field Fq(X)

of rational functions on X. For any closed point x of X we denote by Fx

the completion of F at x and by Ox its ring of integers. If we choose a local

coordinate tx at x (i.e., a rational function on X which vanishes at x to order

one), then we obtain isomorphisms Fx ≃ Fqx
((tx)) and Ox ≃ Fqx

[[tx]], where

Fqx
is the residue field of x; in general, it is a finite extension of Fq containing

qx = qdeg(x) elements.

Thus, we now have a local field attached to each point of X. The ring

A = AF of adèles of F is by definition the restricted product of the fields Fx,

where x runs over the set |X| of all closed points of X. The word “restricted”

means that we consider only the collections (fx)x∈|X| of elements of Fx in
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1.1 The classical theory 7

which fx ∈ Ox for all but finitely many x. The ring A contains the field F ,

which is embedded into A diagonally, by taking the expansions of rational

functions on X at all points.

While in the local Langlands correspondence we considered irreducible

smooth representations of the group GLn over a local field, in the global

Langlands correspondence we consider irreducible automorphic represen-

tations of the group GLn(A). The word “automorphic” means, roughly, that

the representation may be realized in a reasonable space of functions on the

quotient GLn(F )\GLn(A) (on which the group GLn(A) acts from the right).

On the other side of the correspondence we consider n-dimensional repre-

sentations of the Galois group Gal(F/F ), or, more precisely, the Weil group

WF , which is a subgroup of Gal(F/F ) defined in the same way as in the local

case.

Roughly speaking, the global Langlands correspondence is a bijection be-

tween the set of equivalence classes of n-dimensional representations of WF

and the set of equivalence classes of irreducible automorphic representations

of GLn(A):

n-dimensional representations

of WF

⇐⇒
irreducible automorphic

representations of GLn(A)

The precise statement is more subtle. For example, we should consider

the so-called ℓ-adic representations of the Weil group (while in the local case

we considered the admissible complex representations of the Weil–Deligne

group; the reason is that in the local case those are equivalent to the ℓ-adic

representations). Moreover, under this correspondence important invariants

attached to the objects appearing on both sides (Frobenius eigenvalues on

the Galois side and the Hecke eigenvalues on the other side) are supposed to

match. We refer the reader to Part I of the review [F7] for more details.

The global Langlands correspondence has been proved for GL2 in the 1980’s

by V. Drinfeld [Dr1]–[Dr4] and more recently by L. Lafforgue [Laf] for GLn

with an arbitrary n.

The global and local correspondences are compatible in the following sense.

We can embed the Weil group WFx
of each of the local fields Fx into the global

Weil group WF . Such an embedding is not unique, but it is well-defined up

to conjugation in WF . Therefore an equivalence class σ of n-dimensional

representations of WF gives rise to a well-defined equivalence class σx of n-

dimensional representations of WFx
for each x ∈ X. By the local Langlands

correspondence, to σx we can attach an equivalence class of irreducible smooth

representations of GLn(Fx). Choose a representation πx in this equivalence

class. Then the automorphic representation of GLn(A) corresponding to σ
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8 Local Langlands correspondence

is isomorphic to the restricted tensor product
⊗

′

x∈X πx. This is a very non-

trivial statement, because a priori it is not clear why this tensor product may

be realized in the space of functions on the quotient GLn(F )\GLn(A).

As in the local story, we may also wish to replace the group GLn by an arbi-

trary reductive algebraic group defined over F . The general global Langlands

conjecture predicts, roughly speaking, that irreducible automorphic represen-

tations of G(A) are related to homomorphisms WF → LG. But, as in the

local case, the precise formulation of the conjecture for a general reductive

group is much more intricate (see [Art]).

Finally, the global Langlands conjectures can also be stated over number

fields (where they in fact originated). Then we take as the field F a finite

extension of the field Q of rational numbers. Consider for example the case of

Q itself. It is known that the completions of Q are (up to isomorphism) the

fields of p-adic numbers Qp for all primes p (non-archimedian) and the field R

of real numbers (archimedian). So the primes play the role of points of an al-

gebraic curve over a finite field (and the archimedian completion corresponds

to an infinite point, in some sense). The ring of adèles AQ is defined in the

same way as in the function field case, and so we can define the notion of an

automorphic representation of GLn(AQ) or a more general reductive group.

Conjecturally, to each equivalence class of n-dimensional representations of

the Galois group Gal(Q/Q) we can attach an equivalence class of irreducible

automorphic representations of GLn(AQ), but this correspondence is not ex-

pected to be a bijection because in the number field case it is known that

some of the automorphic representations do not correspond to any Galois

representations.

The Langlands conjectures in the number field case lead to very important

and unexpected results. Indeed, many interesting representations of Galois

groups can be found in “nature”. For example, the group Gal(Q/Q) will act

on the geometric invariants (such as the étale cohomologies) of an algebraic

variety defined over Q. Thus, if we take an elliptic curve E over Q, then we

will obtain a two-dimensional Galois representation on its first étale cohomol-

ogy. This representation contains a lot of important information about the

curve E, such as the number of points of E over Z/pZ for various primes p.

The Langlands correspondence is supposed to relate these Galois representa-

tions to automorphic representations of GL2(AF ) in such a way that the data

on the Galois side, like the number of points of E(Z/pZ), are translated into

something more tractable on the automorphic side, such as the coefficients

in the q-expansion of the modular forms that encapsulate automorphic rep-

resentations of GL2(AQ). This leads to some startling consequences, such as

the Taniyama-Shimura conjecture. For more on this, see [F7] and references

therein.

The Langlands correspondence has proved to be easier to study in the func-

tion field case. The main reason is that in the function field case we can use
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1.2 Langlands parameters over the complex field 9

the geometry of the underlying curve and various moduli spaces associated to

this curve. A curve can also be considered over the field of complex numbers.

Some recent results show that a version of the global Langlands correspon-

dence also exists for such curves. The local counterpart of this correspondence

is the subject of this book.

1.2 Langlands parameters over the complex field

We now wish to find a generalization of the local Langlands conjectures in

which we replace the field F = Fq((t)) by the field C((t)). We would like to

see how the ideas and patterns of the Langlands correspondence play out in

this new context, with the hope of better understanding the deep underlying

structures behind this correspondence.

So from now on G will be a connected reductive group over C, and G(F )

the group G((t)) = G(C((t))), also known as the loop group; more precisely,

the formal loop group, with the word “formal” referring to the algebra of

formal Laurent power series C((t)) (as opposed to the group G(C[t, t−1]), where

C[t, t−1] is the algebra of Laurent polynomials, which may be viewed as the

group of maps from the unit circle |t| = 1 to G, or “loops” in G).

Thus, we wish to study smooth representations of the loop group G((t))

and try to relate them to some “Langlands parameters,” which we expect, by

analogy with the case of local non-archimedian fields described above, to be

related to the Galois group of C((t)) and the Langlands dual group LG.

The local Langlands correspondence for loop groups that we discuss in this

book may be viewed as the first step in carrying the ideas of the Langlands

Program to the realm of complex algebraic geometry. In particular, it has

far-reaching consequences for the global geometric Langlands correspondence

(see Section 10.5 and [F7] for more details). This was in fact one of the

motivations for this project.

1.2.1 The Galois group and the fundamental group

We start by describing the Galois group Gal(F/F ) for F = C((t)). Observe

that the algebraic closure F of F is isomorphic to the inductive limit of the

fields C((t1/n)), n ≥ 0, with respect to the natural inclusions C((t1/n)) →֒

C((t1/m)) for n dividing m. Hence Gal(F/F ) is the inverse limit of the Galois

groups

Gal(C((t1/n))/C((t))) ≃ Z/nZ,

where k ∈ Z/nZ corresponds to the automorphism of C((t1/n)) sending t1/n

to e2πik/nt1/n. The result is that

Gal(F/F ) ≃ Ẑ,
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10 Local Langlands correspondence

where Ẑ is the profinite completion of Z that we have encountered before in

Section 1.1.3.

Note, however, that in our study of the Galois group of Fq((t)) the group

Ẑ appeared as its quotient corresponding to the Galois group of the field of

coefficients Fq. Now the field of coefficients is C, hence algebraically closed,

and Ẑ is the entire Galois group of C((t)).

The naive analogue of the Langlands parameter would be an equivalence

class of homomorphisms Gal(F/F ) → LG, i.e., a homomorphism Ẑ → LG.

Since G is defined over C and hence all of its maximal tori are split, the group

G((t)) also contains a split torus T ((t)), where T is a maximal torus of G (but

it also contains non-split maximal tori, as the field C((t)) is not algebraically

closed). Therefore the Langlands dual group LG is the direct product of the

Galois group and the group LG◦. Because it is a direct product, we may, and

will, restrict our attention to LG◦. In order to simplify our notation, from

now on we will denote LG◦ simply by LG.

A homomorphism Ẑ → LG necessarily factors through a finite quotient

Ẑ → Z/nZ. Therefore the equivalence classes of homomorphisms Ẑ → LG are

the same as the conjugacy classes of LG of finite order. There are too few of

these to have a meaningful generalization of the Langlands correspondence.

Therefore we look for a more sensible alternative.

Let us recall the connection between Galois groups and fundamental groups.

Let X be an algebraic variety over C. If Y → X is a covering of X, then the

field C(Y ) of rational functions on Y is an extension of the field F = C(X)

of rational functions on X. The deck transformations of the cover, i.e., auto-

morphisms of Y which induce the identity on X, give rise to automorphisms

of the field C(Y ) preserving C(X) ⊂ C(Y ). Hence we identify the Galois

group Gal(C(Y )/C(X)) with the group of deck transformations. If our cover

is unramified, then this group may be identified with a quotient of the funda-

mental group of X. Otherwise, this group is isomorphic to a quotient of the

fundamental group of X with the ramification divisor thrown out.

In particular, we obtain that the Galois group of the maximal unramified

extension of C(X) (which we can view as the field of functions of the “maximal

unramified cover” of X) is the profinite completion of the fundamental group

π1(X) of X. Likewise, for any divisor D ⊂ X the Galois group of the maximal

extension of C(X) unramified away from D is the profinite completion of

π1(X\D). We denote it by πalg
1 (X\D). The algebraic closure of C(X) is the

inductive limit of the fields of functions on the maximal covers of X ramified

at various divisors D ⊂ X with respect to natural inclusions corresponding to

the inclusions of the divisors. Hence the Galois group Gal(C(X)/C(X)) is the

inverse limit of the groups πalg
1 (X\D) with respect to the maps πalg

1 (X\D′) →

πalg
1 (X\D) for D ⊂ D′.

Strictly speaking, in order to define the fundamental group of X we need

to pick a reference point x ∈ X. In the above discussion we have tacitly
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