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2.5 The Balog–Szemerédi–Gowers theorem 78
2.6 Symmetry sets and imbalanced partial sum sets 83
2.7 Non-commutative analogs 92
2.8 Elementary sum-product estimates 99

3 Additive geometry 112
3.1 Additive groups 113
3.2 Progressions 119
3.3 Convex bodies 122

vii

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521853869 - Additive Combinatorics
Terence Tao and Van Vu
Frontmatter
More information

http://www.cambridge.org/0521853869
http://www.cambridge.org
http://www.cambridge.org


viii Contents

3.4 The Brunn–Minkowski inequality 127
3.5 Intersecting a convex set with a lattice 130
3.6 Progressions and proper progressions 143

4 Fourier-analytic methods 149
4.1 Basic theory 150
4.2 L p theory 156
4.3 Linear bias 160
4.4 Bohr sets 165
4.5 �(p) constants, Bh[g] sets, and dissociated sets 172
4.6 The spectrum of an additive set 181
4.7 Progressions in sum sets 189

5 Inverse sum set theorems 198
5.1 Minimal size of sum sets and the e-transform 198
5.2 Sum sets in vector spaces 211
5.3 Freiman homomorphisms 220
5.4 Torsion and torsion-free inverse theorems 227
5.5 Universal ambient groups 233
5.6 Freiman’s theorem in an arbitrary group 239

6 Graph-theoretic methods 246
6.1 Basic Notions 247
6.2 Independent sets, sum-free subsets, and Sidon sets 248
6.3 Ramsey theory 254
6.4 Proof of the Balog–Szemerédi–Gowers theorem 261
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7.3 The Esséen concentration inequality 290
7.4 Inverse Littlewood–Offord results 292
7.5 Random Bernoulli matrices 297
7.6 The quadratic Littlewood–Offord problem 304

8 Incidence geometry 308
8.1 The crossing number of a graph 308
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Prologue

This book arose out of lecture notes developed by us while teaching courses on
additive combinatorics at the University of California, Los Angeles and the Uni-
versity of California, San Diego. Additive combinatorics is currently a highly
active area of research for several reasons, for example its many applications to
additive number theory. One remarkable feature of the field is the use of tools
from many diverse fields of mathematics, including elementary combinatorics,
harmonic analysis, convex geometry, incidence geometry, graph theory, proba-
bility, algebraic geometry, and ergodic theory; this wealth of perspectives makes
additive combinatorics a rich, fascinating, and multi-faceted subject. There are still
many major problems left in the field, and it seems likely that many of these will
require a combination of tools from several of the areas mentioned above in order
to solve them.

The main purpose of this book is to gather all these diverse tools in one location,
present them in a self-contained and introductory manner, and illustrate their appli-
cation to problems in additive combinatorics. Many aspects of this material have
already been covered in other papers and texts (and in particular several earlier
books [168], [257], [116] have focused on some of the aspects of additive combi-
natorics), but this book attempts to present as many perspectives and techniques
as possible in a unified setting.

Additive combinatorics is largely concerned with the additive structure1 of sets.
To clarify what we mean by “additive structure”, let us introduce the following
definitions.

Definition 0.1 An additive group is any abelian group Z with group operation +.
Note that we can define a multiplication operation nx ∈ Z whenever n ∈ Z and

1 We will also occasionally consider the multiplicative structure of sets as well; we will refer to the
combined study of such structures as arithmetic combinatorics.

xi
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xii Prologue

x ∈ Z in the usual manner: thus 3x = x + x + x , −2x = −x − x , etc. An additive
set is a pair (A, Z ), where Z is an additive group, and A is a finite non-empty subset
of Z . We often abbreviate an additive set (A, Z ) simply as A, and refer to Z as the
ambient group of the additive set. If A, B are additive sets in Z , we define the sum
set

A + B := {a + b : a ∈ A, b ∈ B}
and difference set

A − B := {a − b : a ∈ A, b ∈ B}.
Also, we define the iterated sumset k A for k ∈ Z+ by

k A := {a1 + · · · + ak : a1, . . . , ak ∈ A}.
We caution that the sumset k A is usually distinct from the dilation k · A of A,

defined by

k · A := {ka : a ∈ A}.
For us, typical examples of additive groups Z will be the integers Z, a cyclic

group ZN , a Euclidean space Rn , or a finite field geometry Fn
p . As the notation

suggests, we will eventually be viewing additive sets as “intrinsic” objects, which
can be embedded inside any number of different ambient groups; this is some-
what similar to how a manifold can be thought of intrinsically, or alternatively
can be embedded into an ambient space. To make these ideas rigorous we will
need to develop the theory of Freiman homomorphisms, but we will defer this to
Section 5.3.

Additive sets may have a large or small amount of additive structure. A good
example of a set with little additive structure would be a randomly chosen subset
A of a finite additive group Z with some fixed cardinality. At the other extreme,
examples of sets with very strong additive structure would include arithmetic
progressions

a + [0, N ) · r := {a, a + r, . . . , a + (N − 1)r}
where a, r ∈ Z and N ∈ Z+; or d-dimensional generalized arithmetic progressions

a + [0, N ) · v := {a + n1v1 + · · · + ndvd : 0 ≤ n j < N j for all 1 ≤ j ≤ d}
where a ∈ Z , v = (v1, . . . , vd ) ∈ Zd , and N = (N1, . . . , Nd ) ∈ (Z+)d ; or d-
dimensional cubes

a + {0, 1}d · v = {a + ε1v1 + · · · + εdvd : ε1, . . . , εd ∈ {0, 1}};
or the subset sums F S(A) := {∑a∈B a : B ⊆ A} of a finite set A.
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Prologue xiii

A fundamental task in this subject is to give some quantitative measures of
additive structure in a set, and then investigate to what extent these measures are
equivalent to each other. For example, one could try to quantify each of the fol-
lowing informal statements as being some version of the assertion “A has additive
structure”:

� A + A is small;
� A − A is small;
� A − A can be covered by a small number of translates of A;
� k A is small for any fixed k;
� there are many quadruples (a1, a2, a3, a4) ∈ A × A × A × A such that

a1 + a2 = a3 + a4;
� there are many quadruples (a1, a2, a3, a4) ∈ A × A × A × A such that

a1 − a2 = a3 − a4;
� the convolution 1A ∗ 1A is highly concentrated;
� the subset sums F S(A) := {∑a∈B a : B ⊆ A} have high multiplicity;
� the Fourier transform 1̂A is highly concentrated;
� the Fourier transform 1̂A is highly concentrated in a cube;
� A has a large intersection with a generalized arithmetic progression, of size

comparable to A;
� A is contained in a generalized arithmetic progression, of size comparable to A;
� A (or perhaps A − A, or 2A − 2A) contains a large generalized arithmetic

progression.

The reader is invited to investigate to what extent these informal statements are
true for sets such as progressions and cubes, and false for sets such as random sets.
As it turns out, once one makes the above assertions more quantitative, there are
a number of deep and important equivalences between them; indeed, to oversim-
plify tremendously, all of the above criteria for additive structure are “essentially”
equivalent. There is also a similar heuristic to quantify what it would mean for two
additive sets A, B of comparable size to have a large amount of “shared additive
structure” (e.g. A and B are progressions with the same step size v); we invite the
reader to devise analogs of the above criteria to capture this concept.

Making the above heuristics precise and rigorous will require some work, and
in fact will occupy large parts of Chapters 2, 3, 4, 5, 6. In deriving these basic tools
of the field, we shall need to develop and combine techniques from elementary
combinatorics, additive geometry, harmonic analysis, and graph theory; many of
these methods are of independent interest in their own right, and so we have devoted
some space to treating them in detail.

Of course, a “typical” additive set will most likely behave like a random additive
set, which one expects to have very little additive structure. Nevertheless, it is a
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xiv Prologue

deep and surprising fact that as long as an additive set is dense enough in its ambi-
ent group, it will always have some level of additive structure. The most famous
example of this principle is Szemerédi’s theorem, which asserts that every subset
of the integers of positive upper density will contain arbitrarily long arithmetic
progressions; we shall devote all of Chapter 11 to this beautiful and important the-
orem. A variant of this fact is the very recent Green–Tao theorem, which asserts
that every subset of the prime numbers of positive upper relative density also con-
tains arbitrarily long arithmetic progressions; in particular, the primes themselves
have this property. If one starts with an even sparser set A than the primes, then it
is not yet known whether A will necessarily contain long progressions; however,
if one forms sum sets such as A + A, A + A + A, 2A − 2A, F S(A) then these
sets contain extraordinarily long arithmetic progressions (see in particular Section
4.7 and Chapter 12). This basic principle – that sumsets have much more addi-
tive structure than general sets – is closely connected to the equivalences between
the various types of additive structure mentioned previously; indeed results of the
former type can be used to deduce results of the latter type, and conversely.

We now describe some other topics covered in this text. In Chapter 1 we recall
the simple yet powerful probabilistic method, which is very useful in additive
combinatorics for constructing sets with certain desirable properties (e.g. thin
additive bases of the integers), and provides an important conceptual framework
that complements more classical deterministic approaches to such constructions.
In Chapter 6 we present some ways in which graph theory interacts with additive
combinatorics, for instance in the theory of sum-free sets, or via Ramsey theory.
Graph theory is also decisive in establishing two important results in the theory
of sum sets, the Balog–Szemerédi–Gowers theorem and the Plünnecke inequal-
ities. Two other important tools from graph theory, namely the crossing number
inequality and the Szemerédi regularity lemma, will also be covered in Chapter
8 and Sections 10.6, 11.6 respectively. In Chapter 7 we view sum sets from the
perspective of random walks, and give some classical and recent results concerning
the distribution of these sum sets, and in particular recent applications to random
matrices. Last, but not least, in Chapter 9 we describe some algebraic methods,
notably the combinatorial Nullstellensatz and Chevalley–Waring type methods,
which have led to several deep arithmetical results (often with very sharp bounds)
not obtainable by other means.
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Prologue xv
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General notation

The following general notational conventions will be used throughout the book.

Sets and functions

For any set A, we use

Ad := A × · · · × A = {(a1, . . . , ad ) : a1, . . . , ad ∈ A}
to denote the Cartesian product of d copies of A: thus for instance Zd is the d-
dimensional integer lattice. We shall occasionally denote Ad by A⊕d , in order to
distinguish this Cartesian product from the d-fold product set A·d = A · . . . · A of
A, or the d-fold powers A∧d := {ad : a ∈ A} of A.

If A, B are sets, we use A\B := {a ∈ A : a �∈ B} to denote the set-theoretic
difference of A and B; and B A to denote the space of functions f : A → B from
A to B. We also use 2A := {B : B ⊂ A} to denote the power set of A. We use |A|
to denote the cardinality of A. (We shall also use |x | to denote the magnitude of a

real or complex number x , and |v| =
√

v2
1 + · · · + v2

d to denote the magnitude of

a vector v = (v1, . . . , vd ) in a Euclidean space Rd . The meaning of the absolute
value signs should be clear from context in all cases.)

If A ⊂ Z , we use 1A : Z → {0, 1} to denote the indicator function of A: thus
1A(x) = 1 when x ∈ A and 1A(x) = 0 otherwise. Similarly if P is a property,
we let I(P) denote the quantity 1 if P holds and 0 otherwise; thus for instance
1A(x) = I(x ∈ A).

We use
(n

k

) = n!
k!(n−k)! to denote the number of k-element subsets of an n-element

set. In particular we have the natural convention that
(n

k

) = 0 if k > n or k < 0.

Number systems

We shall rely frequently on the integers Z, the positive integers Z+ := {1, 2, . . .},
the natural numbers N := Z≥0 = {0, 1, . . .}, the reals R, the positive reals
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xvi Prologue

R+ := {x ∈ R : x > 0}, the non-negative reals R≥0 := {x ∈ R : x ≥ 0}, and the
complex numbers C, as well as the circle group R/Z := {x + Z : x ∈ R}.

For any natural number N ∈ N, we use ZN := Z/NZ to denote the cyclic group
of order N , and use n �→ n mod N to denote the canonical projection from Z to
ZN . If q is a prime power, we use Fq to denote the finite field of order q (see
Section 9.4). In particular if p is a prime then Fp is identifiable with Zp.

If x is a real number, we use 
x� to denote the greatest integer less than or equal
to x .

Landau asymptotic notation

Let n be a positive variable (usually taking values on N, Z+, R≥0, or R+, and often
assumed to be large) and let f (n) and g(n) be real-valued functions of n.

� g(n) = O( f (n)) means that f is non-negative, and there is a positive constant
C such that |g(n)| ≤ C f (n) for all n.

� g(n) = �( f (n)) means that f, g are non-negative, and there is a positive
constant c such that g(n) ≥ c f (n) for all sufficiently large n.

� g(n) = �( f (n)) means that f, g are non-negative and both g(n) = O( f (n))
and g(n) = �( f (n)) hold; that is, there are positive constants c and C such that
c f (n) ≥ g(n) ≥ C f (n) for all n.

� g(n) = on→∞( f (n)) means that f is non-negative and g(n) = O(a(n) f (n)) for
some a(n) which tends to zero as n → ∞; if f is strictly positive, this is
equivalent to limn→∞ g(n)/ f (n) = 0.

� g(n) = ωn→∞( f (n)) means that f, g are non-negative and f (n) = on→∞(g(n)).

In most cases the asymptotic variable n will be clear from context, and we shall
simply write on→∞( f (n)) as o( f (n)), and similarly write ωn→∞( f (n)) as ω( f (n)).
In some cases the constants c,C and the decaying function a(n) will depend on
some other parameters, in which case we indicate this by subscripts. Thus for
instance g(n) = Ok( f (n)) would mean that g(n) ≤ Ck f (n) for all n, where Ck

depends on the parameter k; similarly, g(n) = on→∞;k( f (n)) would mean that
g(n) = O(ak(n) f (n)) for some ak(n) which tends to zero as n → ∞ for each
fixed k.

The notation g(n) = Õ( f (n)) has been used widely in the combinatorics and
theoretical computer science community in recent years; g(n) = Õ( f (n)) means
that there is a constant c such that g(n) ≤ f (n) logc n for all sufficiently large n.
We can define, in a similar manner, �̃ and �̃, though this notation will only be
used occasionally here. Here and throughout the rest of the book, log shall denote
the natural logarithm unless specified by subscripts, thus logx y = log y

log x .
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Prologue xvii

Progressions

We have already encountered the concept of a generalized arithmetic progression.
We now make this concept more precise.

Definition 0.2 (Progressions) For any integers a ≤ b, we let [a, b] denote the
discrete closed interval [a, b] := {n ∈ Z : a ≤ n ≤ b}; similarly define the half-
open discrete interval [a, b), etc. More generally, if a = (a1, . . . , ad ) and b =
(b1, . . . , bd ) are elements of Zd such that a j ≤ b j , we define the discrete box

[a, b] := {(n1, . . . , nd ) ∈ Zd : a j ≤ n j ≤ b j for all 1 ≤ j ≤ d},
and similarly

[a, b) := {(n1, . . . , nd ) ∈ Zd : a j ≤ n j < b j for all 1 ≤ j ≤ d},
etc. If Z is an additive group, we define a generalized arithmetic progression (or
just progression for short) in Z to be any set1 of the form P = a + [0, N ] · v,
where a ∈ Z , N = (N1, . . . , Nd ) is a tuple, [0, N ] ⊂ Zd is a discrete box, v =
(v1, . . . , vd ) ∈ Zd , the map · : Zd × Zd → Z is the dot product

(n1, . . . , nd ) · (v1, . . . , vd ) := n1v1 + · · · + ndvd ,

and [0, N ] · v := {n · v : n ∈ [0, N ]}. In other words,

P = {a + n1v1 + · · · + ndvd : 0 ≤ n j ≤ N j for all 1 ≤ j ≤ d}.
We call a the base point of P , v = (v1, . . . , vd ) the basis vectors of P , N the dimen-
sion of P , d the dimension or rank of P , and vol(P) := |[0, N ]| = ∏d

j=1(N j + 1)
the volume of P . We say that the progression P is proper if the map n �→ n · v is
injective on [0, N ], or equivalently if the cardinality of P is equal to its volume
(as opposed to being strictly smaller than the volume, which can occur if the basis
vectors are linearly dependent over Z). We say that P is symmetric if −P = P;
for instance [−N , N ] · v = −N · v + [0, 2N ] · v is a symmetric progression.

Other notation

There are a number of other definitions that we shall introduce at appropriate junc-
tures and which will be used in more than one chapter of the book. These include
the probabilistic notation (such as E(), P(), I(), Var(), Cov()) that we introduce

1 Strictly speaking, this is an abuse of notation; the arithmetic progression should really be the
sextuple (P, d, N , a, v, Z ), because the set P alone does not always uniquely determine the base
point, step, ambient space or even length (if the progression is improper) of the progression P .
However, as it would be cumbersome continually to use this sextuple, we shall usually just P to
denote the progression.
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xviii Prologue

at the start of Chapter 1, and measures of additive structure such as the doubling
constant σ [A] (Definition 2.4), the Ruzsa distance d(A, B) (Definition 2.5), and
the additive energy E(A, B) (Definition 2.8). We also introduce the concept of a

partial sum set A
G+ B in Definition 2.28. The Fourier transform and the averaging

notation Ex∈Z f (x), PZ A is defined in Section 4.1, Fourier bias ‖A‖u is defined
in Definition 4.12, Bohr sets Bohr(S, ρ) are defined in Definition 4.17, and �(p)
constants are defined in Definition 4.26. The important notion of a Freiman homo-
morphism is defined in Definition 5.21. The notation for group theory (e.g. ord(x)
and 〈x〉) is summarized in Section 3.1, while the notation for finite fields is sum-
marized in Section 9.4.
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