Phase Equilibria, Phase Diagrams and Phase Transformations Second Edition

Thermodynamic principles are central to understanding material behaviour, particularly as the application of these concepts underpins phase equilibrium, transformation and state. While this is a complex and challenging area, the use of computational tools has allowed the materials scientist to model and analyse increasingly convoluted systems more readily. In order to use and interpret such models and computed results accurately, a strong understanding of the basic thermodynamics is required.

This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples – many computer calculated – and exercises with solutions, this textbook is a valuable resource for advanced undergraduate and graduate students in materials science and engineering.

Additional information on this title, including further exercises and solutions, is available at www.cambridge.org/9780521853514. The commercial thermodynamic package 'Thermo-Calc' is used throughout the book for computer applications; a link to a limited free of charge version can be found at the above website and can be used to solve the further exercises. In principle, however, a similar thermodynamic package can be used.

MATS HILLERT is a Professor Emeritus at KTH (Royal Institute of Technology) in Stockholm.

Phase Equilibria, Phase Diagrams and Phase Transformations

Their Thermodynamic Basis

Second Edition

MATS HILLERT Department of Materials Science and Engineering KTH, Stockholm

Cambridge University Press	
78-0-521-85351-4 - Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic	
Basis, Second Edition	
Aats Hillert	
Frontmatter	
Aore information	

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521853514

© M. Hillert 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published 1998 Second edition published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-85351-4 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface to second edition		
	Prefa	xiii	
1	Basi	c concepts of thermodynamics	1
	1.1	External state variables	1
	1.2	Internal state variables	3
	1.3	The first law of thermodynamics	5
	1.4	Freezing-in conditions	9
	1.5	Reversible and irreversible processes	10
	1.6	Second law of thermodynamics	13
	1.7	Condition of internal equilibrium	17
	1.8	Driving force	19
	1.9	Combined first and second law	21
	1.10	General conditions of equilibrium	23
	1.11	Characteristic state functions	24
	1.12	Entropy	26
2	Man	30	
	2.1	Evaluation of one characteristic state function from another	30
	2.2	Internal variables at equilibrium	31
	2.3	Equations of state	33
	2.4	Experimental conditions	34
	2.5	Notation for partial derivatives	37
	2.6	Use of various derivatives	38
	2.7	Comparison between C_V and C_P	40
	2.8	Change of independent variables	41
	2.9	Maxwell relations	43
3	Systems with variable composition		45
	3.1	Chemical potential	45
	3.2	Molar and integral quantities	46
	3.3	More about characteristic state functions	48

mbridge University Press	
8-0-521-85351-4 - Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynam	ic
sis, Second Edition	
ats Hillert	
ontmatter	
ore information	

vi	Conte	ents	
	3.4	Additivity of extensive quantities. Free energy and exergy	51
	3.5	Various forms of the combined law	52
	3.6	Calculation of equilibrium	54
		Evaluation of the driving force	56
	3.8	Driving force for molecular reactions	58
	3.9	6 6	
	• • •	T or P	59
	3.10	Effective driving force	60
4	Prac	tical handling of multicomponent systems	63
	4.1	Partial quantities	63
	4.2	Relations for partial quantities	65
	4.3	Alternative variables for composition	67
	4.4	The lever rule	70
	4.5	The tie-line rule	71
	4.6	Different sets of components	74
	4.7		75
	4.8	Chemical potentials in a phase with sublattices	77
5	Ther	modynamics of processes	80
	5.1	Thermodynamic treatment of kinetics of	
		internal processes	80
	5.2	Transformation of the set of processes	83
	5.3	Alternative methods of transformation	85
	5.4	Basic thermodynamic considerations for processes	89
	5.5	Homogeneous chemical reactions	92
	5.6	Transport processes in discontinuous systems	95
	5.7	Transport processes in continuous systems	98
	5.8	Substitutional diffusion	101
	5.9	Onsager's extremum principle	104
6	Stability		108
	6.1	Introduction	108
	6.2	Some necessary conditions of stability	110
	6.3	Sufficient conditions of stability	113
	6.4	Summary of stability conditions	115
	6.5	Limit of stability	116
	6.6		117
	6.7	Chemical capacitance	120
	6.8	Limit of stability against fluctuations of	
		internal variables	121
	6.9	Le Chatelier's principle	123

Cambridge University Press
978-0-521-85351-4 - Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic
Basis, Second Edition
Mats Hillert
Frontmatter
More information

		Contents	vii
7	Applications of molar Gibbs energy diagrams		126
	7.1 Molar Gibbs energy diagrams for binary systems		126
	7.2 Instability of binary solutions		120
	7.3 Illustration of the Gibbs–Duhem relation		132
	7.4 Two-phase equilibria in binary systems		135
	7.5 Allotropic phase boundaries		137
	7.6 Effect of a pressure difference on a two-phase equilibrium		138
	7.7 Driving force for the formation of a new phase		142
	7.8 Partitionless transformation under local equilibrium		144
	7.9 Activation energy for a fluctuation		147
	7.10 Ternary systems		149
	7.11 Solubility product		151
8	Phase equilibria and potential phase diagrams		155
	8.1 Gibbs' phase rule		155
	8.2 Fundamental property diagram		157
	8.3 Topology of potential phase diagrams		162
	8.4 Potential phase diagrams in binary and multinary system	ms	166
	8.5 Sections of potential phase diagrams		168
	8.6 Binary systems		170
	8.7 Ternary systems		173
	8.8 Direction of phase fields in potential phase diagrams8.9 Extremum in temperature and pressure		177 181
9	Molar phase diagrams		185
	9.1 Molar axes		185
	9.2 Sets of conjugate pairs containing molar variables		189
	9.3 Phase boundaries		193
	9.4 Sections of molar phase diagrams		195
	9.5 Schreinemakers' rule		197
	9.6 Topology of sectioned molar diagrams		201
10	Projected and mixed phase diagrams		205
	10.1 Schreinemakers' projection of potential phase diagrams	3	205
	10.2 The phase field rule and projected diagrams		208
	10.3 Relation between molar diagrams and Schreinemakers'		
	projected diagrams		212
	10.4 Coincidence of projected surfaces		215
	10.5 Projection of higher-order invariant equilibria		217
	10.6 The phase field rule and mixed diagrams		220
	10.7 Selection of axes in mixed diagrams		223

Cambridge University Press
978-0-521-85351-4 - Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic
Basis, Second Edition
Mats Hillert
Frontmatter
More information

viii	Contents		
	10.8 Ko	onovalov's rule	226
		eneral rule for singular equilibria	220
11	Directio	on of phase boundaries	233
	11.1 Us	se of distribution coefficient	233
	11.2 Ca	alculation of allotropic phase boundaries	235
	11.3 Va	ariation of a chemical potential in a two-phase field	238
	11.4 Di	irection of phase boundaries	240
	11.5 Co	ongruent melting points	244
	11.6 Ve	ertical phase boundaries	248
	11.7 Sl	ope of phase boundaries in isothermal sections	249
	11.8 Th	ne effect of a pressure difference between two phases	251
12	Sharp a	nd gradual phase transformations	253
	12.1 Ex	sperimental conditions	253
	12.2 Cł	naracterization of phase transformations	255
	12.3 M	icrostructural character	259
	12.4 Ph	hase transformations in alloys	261
	12.5 Cl	assification of sharp phase transformations	262
	12.6 Aj	pplications of Schreinemakers' projection	266
		sheil's reaction diagram	270
		radual phase transformations at fixed composition	272
	12.9 Ph	ase transformations controlled by a chemical potential	275
13	Transfo	rmations in closed systems	279
	13.1 Tł	he phase field rule at constant composition	279
		eaction coefficients in sharp transformations	
	fo	r p = c + 1	280
	13.3 Gi	raphical evaluation of reaction coefficients	283
	13.4 Re	eaction coefficients in gradual transformations	
		$\mathbf{r} \ p = c$	285
		riving force for sharp phase transformations	287
		riving force under constant chemical potential	291
		eaction coefficients at constant chemical potential	294
		ompositional degeneracies for $p = c$ fect of two compositional degeneracies for $p = c - 1$	295 299
14		nless transformations	302
		eviation from local equilibrium	302
		diabatic phase transformation	303 305
		uasi-adiabatic phase transformation	305 308
	14.4 Pa	artitionless transformations in binary system	308

Cambridge University Press
978-0-521-85351-4 - Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic
Basis, Second Edition
Mats Hillert
Frontmatter
More information

		Contents	ix
	14.5	Partial chemical equilibrium	311
	14.6	Transformations in steel under quasi-paraequilibrium	315
	14.7	Transformations in steel under partitioning of alloying elements	319
15	Limit	of stability and critical phenomena	322
	15.1	Transformations and transitions	322
	15.2	Order-disorder transitions	325
	15.3	Miscibility gaps	330
	15.4	Spinodal decomposition	334
	15.5	Tri-critical points	338
16	Interf	aces	344
	16.1	Surface energy and surface stress	344
	16.2	Phase equilibrium at curved interfaces	34
	16.3	Phase equilibrium at fluid/fluid interfaces	340
	16.4	Size stability for spherical inclusions	350
	16.5	Nucleation	35
	16.6	Phase equilibrium at crystal/fluid interface	353
	16.7	Equilibrium at curved interfaces with regard to composition	350
	16.8	Equilibrium for crystalline inclusions with regard to composition	359
	16.9	Surface segregation	36
	16.10	Coherency within a phase	363
	16.11	Coherency between two phases	366
	16.12	Solute drag	37
17	Kineti	cs of transport processes	377
	17.1	Thermal activation	37
	17.2	Diffusion coefficients	38
	17.3	Stationary states for transport processes	384
	17.4	Local volume change	388
	17.5	Composition of material crossing an interface	390
	17.6	Mechanisms of interface migration	39
	17.7	Balance of forces and dissipation	390
18	Metho	ods of modelling	400
	18.1	General principles	400
	18.2	Choice of characteristic state function	40
	18.3	Reference states	402
	18.4	Representation of Gibbs energy of formation	403
	18.5	Use of power series in <i>T</i>	40′
	18.6	Representation of pressure dependence	408
	18.7	Application of physical models	410

X

Contents

Cambridge University Press
978-0-521-85351-4 - Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic
Basis, Second Edition
Mats Hillert
Frontmatter
More information

	18.8	Ideal gas	411
	18.9	-	412
	18.10	Mixtures of gas species	415
	18.11	5	417
	18.12	Electron gas	418
19	Mode	lling of disorder	420
	19.1	Introduction	420
	19.2	Thermal vacancies in a crystal	420
	19.3	Topological disorder	423
	19.4	1 2	425
	19.5	Magnetic contribution to thermodynamic properties	429
	19.6	A simple physical model for the magnetic contribution	431
	19.7 19.8		434 436
	19.8 19.9		430 437
	19.9	Interstitial solutions	437
	19.10	Incristitial solutions	-1 <i>39</i>
20	Math	ematical modelling of solution phases	441
	20.1	Ideal solution	441
	20.2		443
	20.3	1	444
	20.4	1 11	445
		Real solutions	448
	20.6	11	452
		Dilute solution approximations	454
	20.8	6	456
	20.9	Numerical methods of predictions for higher-order systems	458
21	Soluti	ion phases with sublattices	460
	21.1	Sublattice solution phases	460
		Interstitial solutions	462
	21.3	Reciprocal solution phases	464
	21.4	Combination of interstitial and substitutional solution	468
	21.5	Phases with variable order	469
	21.6	Ionic solid solutions	472
22	Physi	cal solution models	476
	22.1	Concept of nearest-neighbour bond energies	476
	22.2	Random mixing model for a substitutional solution	478
	22.3	Deviation from random distribution	479
	22.4	Short-range order	482

		Contents	xi
22.5	Long-range order		484
22.6	Long- and short-range order		486
22.7	The compound energy formalism with short-range order		488
22.8	Interstitial ordering		490
22.9	Composition dependence of physical effects		493
References			496
Index			499

Preface to second edition

The requirement of the second law that the internal entropy production must be positive for all spontaneous changes of a system results in the equilibrium condition that the entropy production must be zero for all conceivable internal processes. Most thermodynamic textbooks are based on this condition but do not discuss the magnitude of the entropy production for processes. In the first edition the entropy production was retained in the equations as far as possible, usually in the form of $Dd\xi$ where D is the driving force for an isothermal process and ξ is its extent. It was thus possible to discuss the magnitude of the driving force for a change and to illustrate it graphically in molar Gibbs energy diagrams. In other words, the driving force for irreversible processes was an important feature of the first edition. Two chapters have now been added in order to include the theoretical treatment of how the driving force determines the rate of a process and how simultaneous processes can affect each other. This field is usually defined as irreversible thermodynamics. The mathematical description of diffusion is an important application for materials science and is given special attention in those two new chapters. Extremum principles are also discussed.

A third new chapter is devoted to the thermodynamics of surfaces and interfaces. The different roles of surface energy and surface stress in solids are explained in detail, including a treatment of critical nuclei. The thermodynamic effects of different types of coherency stresses are outlined and the effect of segregated atoms on the migration of interfaces, so-called solute drag, is discussed using a general treatment applicable to grain boundaries and phase interfaces.

The three new chapters are the results of long and intensive discussions and collaboration with Professor John Ågren and could not have been written without that input. Thanks are also due to several researchers in his department who have been extremely open to discussions and even collaboration. In particular, thanks are due to Dr Malin Selleby who has again given invaluable input by providing the large number of computer-calculated diagrams. They are easily recognized by the triangular *Thermo-Calc* logotype. Those diagrams demonstrate that thermodynamic equations can be directly applied without any new programming. The author hopes that the present textbook will inspire scientists and engineers, professors and students to more frequent use of thermodynamics to solve problems in materials science.

A large number of solved exercises are also available online from the Cambridge University Press website (www.cambridge.org/9780521853514). In addition, the website contains a considerable number of exercises to be solved by the reader using a link to a limited free-of-charge version of the commercial thermodynamic package Thermo-Calc. In principle, they could be solved on a similar thermodynamic package.

Preface to first edition

Thermodynamics is an extremely powerful tool applicable to a wide range of science and technology. However, its full potential has been utilized by relatively few experts and the practical application of thermodynamics has often been based simply on dilute solutions and the law of mass action. In materials science the main use of thermodynamics has taken place indirectly through phase diagrams. These are based on thermodynamic principles but, traditionally, their determination and construction have not made use of thermodynamic calculations, nor have they been used fully in solving practical problems. It is my impression that the role of thermodynamics in the teaching of science and technology has been declining in many faculties during the last few decades, and for good reasons. The students experience thermodynamics as an abstract and difficult subject and very few of them expect to put it to practical use in their future career.

Today we see a drastic change of this situation which should result in a dramatic increase of the use of thermodynamics in many fields. It may result in thermodynamics regaining its traditional role in teaching. The new situation is caused by the development both of computer-operated programs for sophisticated equilibrium calculations and extensive databases containing assessed thermodynamic parameter values for individual phases from which all thermodynamic properties can be calculated. Experts are needed to develop the mathematical models and to derive the numerical values of all the model parameters from experimental information. However, once the fundamental equations are available, it will be possible for engineers with limited experience to make full use of thermodynamic calculations in solving a variety of complicated technical problems. In order to do this, it will not be necessary to remember much from a traditional course in thermodynamics. Nevertheless, in order to use the full potential of the new facilities and to avoid making mistakes, it is still desirable to have a good understanding of the basic principles of thermodynamics. The present book has been written with this new situation in mind. It does not provide the reader with much background in numerical calculation but should give him/her a solid basis for an understanding of the thermodynamic principles behind a problem, help him/her to present the problem to the computer and allow him/her to interpret the computer results.

The principles of thermodynamics were developed in an admirably logical way by Gibbs but he only considered equilibria. It has since been demonstrated, e.g. by Prigogine and Defay, that classical thermodynamics can also be applied to systems not at equilibrium whereby the affinity (or driving force) for an internal process is evaluated as an ordinary thermodynamic quantity. I have followed that approach by introducing a

xiv Preface to first edition

clear distinction between external variables and internal variables referring to entropyproducing internal processes. The entropy production is retained when the first and second laws are combined and the driving force for internal processes then plays a central role throughout the development of the thermodynamic principles. In this way, the driving force appears as a natural part of the thermodynamic application 'tool'.

Computerized calculations of equilibria can easily be directed to yield various types of diagram, and phase diagrams are among the most useful. The computer provides the user with considerable freedom of choice of axis variables and in the sectioning and projection of a multicomponent system, which is necessary for producing a two-dimensional diagram. In order to make good use of this facility, one should be familiar with the general principles of phase diagrams. Thus, a considerable part of the present book is devoted to the inter-relations between thermodynamics and phase diagrams. Phase diagrams are also used to illustrate the character of various types of phase transformations. My ambition has been to demonstrate the important role played by thermodynamics in the study of phase transformations.

I have tried to develop thermodynamics without involving the special properties of particular kinds of phases, but have found it necessary sometimes to use the ideal gas or the regular solution to illustrate principles. However, even though thermodynamic models and derived model parameters are already stored in databases, and can be used without the need to inspect them, it is advantageous to have some understanding of thermodynamic modelling. The last few chapters are thus devoted to this subject. Simple models are discussed, not because they are the most useful or popular, but rather as illustrations of how modelling is performed.

Many sections may give the reader little stimulation but may be valuable as reference material for later parts of the book or for future work involving thermodynamic applications. The reader is advised to peruse such sections very quickly, but to remember that this material is available for future consultation.

Practically every section ends with at least one exercise and the accompanying solution. These exercises often contain material that could have been included in the text, but would have made the text too massive. The reader is advised not to study such exercises until a more thorough understanding of the content of a particular section is required.

This book is the result of a long period of research and teaching, centred on thermodynamic applications in materials science. It could not have been written without the inspiration and help received through contacts with numerous students and colleagues. Special thanks are due to my former students, Professor Bo Sundman and Docent Bo Jansson, whose development of the Thermo-Calc data bank system has inspired me to penetrate the underlying thermodynamic principles and has made me aware of many important questions. Thanks are also due to Dr Malin Selleby for producing a large number of diagrams by skilful operation of Thermo-Calc. All her diagrams in this book can be identified by the use of the Thermo-Calc logotype, A.

> Mats Hillert Stockholm