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1 Introduction

When Bak, Tang, and Wiesenfeld (1987) coined the term Self-Organised Criticality

(SOC), it was an explanation for an unexpected observation of scale invariance and, at the

same time, a programme of further research. Over the years it developed into a subject

area which is concerned mostly with the analysis of computer models that display a form

of generic scale invariance. The primacy of the computer model is manifest in the first

publication and throughout the history of SOC, which evolved with and revolved around

such computer models. That has led to a plethora of computer ‘models’, many of which are

not intended to model much except themselves (also Gisiger, 2001), in the hope that they

display a certain aspect of SOC in a particularly clear way.

The question whether SOC exists is empty if SOC is merely the title for a certain class

of computer models. In the following, the term SOC will therefore be used in its original

meaning (Bak et al., 1987), to be assigned to systems

with spatial degrees of freedom [which] naturally evolve into a self-organized critical

point.

Such behaviour is to be juxtaposed to the traditional notion of a phase transition, which is

the singular, critical point in a phase diagram, where a system experiences a breakdown

of symmetry and long-range spatial and, in non-equilibrium, also temporal correla-

tions, generally summarised as (power law) scaling (Widom, 1965a,b; Stanley, 1971). The

paradigmatic example for such a critical phenomenon is the Ising Model, which displays

scaling only at a specific critical temperature, the value of which depends on the type and

dimension of the lattice considered, as well as the details of the interaction, and is generally

not known analytically.

Bak et al. (1987) found a simple computer model which seemed to develop into a

non-trivial scale invariant state, displaying long-range spatiotemporal correlations and self-

similarity, without the need of any tuning of a temperature-like control parameter to a critical

value. Universality of the asymptote of the correlation function is immediately suspected

by analogy with ordinary scale invariance, i.e. critical phenomena. More than twenty years

later, one can review the situation. Does SOC exist? A host of models has been studied in

great detail with mixed results. While some eventually turned out not to display scaling,

a range of models displays the expected behaviour. The situation is less encouraging for

experimental evidence, which suggests that there are very few systems with solid scaling

behaviour. The most pessimistic perspective on the numerical and experimental evidence

is that none of the systems displays asymptotic scaling behaviour and SOC does not exist.

With the theoretical, numerical and experimental evidence presented in the following, this

point of view is difficult to maintain. SOC exists, very convincingly, in flux avalanches in
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4 Introduction

superconductors and certainly in the MANNA Model and the OSLO Model. Yet, it is probably

not as common as originally envisaged so that the enormous body of work reporting long-

range behaviour, which is close to but not exactly a power law, still awaits an explanation

beyond SOC.

There is a number of reasons why SOC is important independent of how broadly it

applies. Initially, it was a solution of the riddle of 1/ f noise (Sec. 1.3.2), the frequently

found scaling of the power spectrum of a time series. Press (1978) popularised the notion

of 1/ f noise and its ubiquity (also Dutta and Horn, 1981; Hooge, Kleinpenning, and

Vandamme, 1981; Weissman, 1988). SOC provided a promising explanation, which was

long overdue. Perhaps more importantly, it answered Kadanoff’s (1986) call for a ‘physics of

fractals’ with a theory that epitomises Anderson’s (1972) credo ‘more is different’: ‘The aim

of the science of self-organized criticality is to yield insight into the fundamental question

of why nature is complex, not simple, as the laws of physics imply’ (Bak, 1996, p. xi). As

Gisiger (2001) summarised: with the advent of SOC ‘[. . . ] the important question which

arose from the work of Mandelbrot [. . . ] has shifted from “Why is there scale invariance in

nature?” to “Is nature critical?” [. . . ]’. Thirdly and more concretely, if SOC were generally

to be found across a large class of systems, then universality would unify these systems,

and their internal interactions could be identified and studied. They dominate the long time

and large scale behaviour, just like in ordinary critical phenomena with a broken symmetry

and could be studied in a simplified experiment on the laboratory scale or a simple computer

model, rather than ‘attempt[ing] to model the detailed, and perhaps insuperably complex[,]

microphysics’ (Dendy, Helander, and Tagger, 1999). Even if universality does not apply to

SOC, scaling still means that some large scale phenomena can be studied on the laboratory

scale, provided only that both are governed by the asymptotic behaviour of the system.

Finally, even if SOC is less common than initially expected, it might still help to elucidate

the nature of the critical state in traditional critical phenomena. It might even serve as a

recipe to make these systems self-tune to a transition.

To appreciate its impact, it is interesting to retrace the historical context of SOC. In the

1960s statistical mechanics gained the ability to incorporate large fluctuations in a mean-

ingful way and moved from the physics of gases and liquids with small, local perturbations,

to the physics of long-range correlations as observed at phase transitions. Kadanoff (1966)

explained the scaling ideas brought forward by Ben Widom using the concept of renor-

malisation. In the 1970s Wilson’s renormalisation group led to a deep understanding of

phase transitions and symmetry breaking. The 1980s made fractals popular; their physical

manifestations are collected in Mandelbrot’s (1983) famous ‘manifesto and casebook’. By

the end of that decade, SOC was born and helped to promote the notion of complexity.

Since then, the focus has shifted to the more general idea of emergence, which summarises

in a single word the phenomenon that many interacting degrees of freedom can bring about

cooperative phenomena, i.e. the whole is more than the sum of its parts and effective

long-range interaction looks fundamentally different from the microscopic interaction it is

caused by.

Like the 1980s theme of fractals, SOC reaches far beyond its original realm. Other subject

areas that tap into the results in SOC often regard it as an explanation for the observed

emergent phenomenon, as originally envisaged by Bak et al. (1987). Given, however,
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5 1.1 Reviews

that SOC itself is not fully understood, its explanatory power stretches only so far as to

assume that a given scale-free phenomenon is caused by the system self-organising to an

underlying critical point. Whether that leads to any further insight depends on the nature of

the phenomenon in question. For example, if evolution is self-organised critical (Sec. 3.5),

the hunt for external causes of mass extinction is put into question. Claiming that the

Barkhausen effect (Sec. 3.3) is self-organised critical adds much less to the understanding

of the phenomenon and might ultimately be seen merely as a change of perspective.

Apart from identifying systems that indisputably display SOC, a lot of research is dedi-

cated to the question how SOC works, i.e. its necessary and sufficient conditions. Among the

many proposed mechanisms, the Absorbing State Mechanism (AS mechanism, Sec. 9.3)

has gained so much popularity that SOC is considered by some as explained. The fact

that many of its key ideas were laid out already by Bak et al. (1987, also Tang and Bak,

1988b) is a striking testimony of their genius. According to the AS mechanism, SOC

is due to a very simple feedback loop, leading to the self-tuning of a parameter that

controls a non-equilibrium phase transition to its critical point. As discussed in detail

elsewhere (Sec. 9.3.4), some important ingredients of the AS mechanism might still be

missing.

The big challenges in SOC on a more technical level thus have remained the same

for almost twenty years: on the most basic level, the identification of universality classes

containing models that display solid scaling behaviour. This is mostly numerical work and

significant progress has been made in particular with respect to the MANNA universality

class (Sec. 6.2.1.2). Other universality classes displaying robust scaling are very scarce,

virtually non-existent. A much bigger challenge is to develop a full understanding of the

underlying mechanism including the link to ordinary critical phenomena, which includes

absorbing state phase transitions. Such a mechanism might be applicable to ordinary critical

phenomena. Finally, the big question: why are so many natural phenomena so broadly

distributed, (almost) resembling a power law? The answer to this question might, of course,

lie far outside the realm of SOC.

The questions where SOC can be found, which systems are governed by it, what that

implies, what the general features of SOC are, its necessary and sufficient conditions,

all of this is still a very active research field. After a short overview of other reviews

on SOC, in the remainder of this chapter the key concepts of SOC are introduced as

well as its basic ingredients and observables. Two more chapters in Part I introduce the

concepts and technicalities of scaling and a review of the many SOC experiments and

observations. Part II is dedicated to a number of widely studied (computer) models dis-

playing SOC, while Part III discusses various analytical approaches to the understanding of

SOC.

1.1 Reviews

Over the years, a large number of reviews of SOC has been published. Of those with

very broad scope, Bak’s (1996) famous book with the equally ambitious as teasing title
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6 Introduction

‘how nature works’, popularised the subject, but also antagonised a few. The very readable,

succinct review by Jensen (1998) soon became the most cited academic reference, providing

a comprehensive and comprehensible overview of the main results and central themes in

SOC. Sornette’s (2nd edition 2006) book places SOC in a broader context with a wider

background in probability theory and physics. Christensen and Moloney’s (2005) textbook

takes a similar approach and is aimed mainly at the audience of researchers in other

subjects as well as undergraduates. A light and much shorter introduction can be found in

the beautifully illustrated article by Bak and Chen (1991) and an even shorter one in Bak

and Tang (1989b), which is probably relevant only for historic reasons. A broad but more

technical overview is given by Bak and Paczuski (1993) and Bak and Paczuski (1995),

which place SOC in the context of complexity and vice versa (Vicsek, 2002). As for the

relation between complexity and statistical mechanics, Kadanoff (2000) is an invaluable

collection of original articles and commentary.

Shorter, often more specialised and much more technical, but also more up-to-date

reviews have frequently been published over the last fifteen years or so. Dhar (1999a,c,

2006) concentrated mostly on exact results, whereas Alava (2004) discussed the relation

of SOC to (ordinary) non-equilibrium phase transitions, growth phenomena and interfaces

in random media. This approach can be traced back to the highly influential review by

Dickman, Muñoz, Vespignani, and Zapperi (2000), which presented some of the key models

and experiments on SOC in the light of absorbing state phase transitions. Volume 340, issue

4 of Physica A (Alstrøm, Bohr, Christensen, et al., 2004) contains short and very diverse

reviews from the participants of a symposium in memory of Per Bak, a valuable resource to

retrace the history of SOC and its impact on current research. At least two other proceedings

volumes are similarly useful. The first half of the volume edited by Riste and Sherrington

(1991) gives an overview of SOC and its context only a few years after its conception. The

volume edited by McKane, Droz, Vannimenus, and Wolf (1995), which contains Grinstein’s

(1995) highly influential review, shows a more mature field, with links to growth, generic

scale invariance and cellular automata. An early, detailed and quite technical review of

SOC with special attention to extremal dynamics and interface depinning was published by

Paczuski, Maslov, and Bak (1996). The recent development regarding the relation between

SOC and absorbing states is discussed in Muñoz, Dickman, Pastor-Satorras et al. (2001).

On the more applied side, Hergarten (2002) published a monograph on SOC in earth

systems.

A highly critical assessment of SOC on a philosophical level can be found in Frigg

(2003), who also presented an introduction to some of the frequently used SOC models.

The epistomology of emergence and thus complexity is discussed in Batterman (2002).

Earlier, Horgan (1995) wrote a more entertaining piece on complexity, including SOC,

questioning to what extent it is delivering on the promises it apparently made (but Vicsek,

2002). Complexity might have replaced the oversimplified interpretation of reductionism

as a way of reconstructing the world, as criticised by Anderson (1972), by an equally

naı̈ve notion of universality (Batterman, 2002), which takes away too many details of the

phenomena science and technology are interested in. As much as psychology is not applied

biology and chemistry is not applied particle physics, the universal phenomena shared by

them might be pretty meaningless to them all.
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1.2 Basic ingredients

A precise definition of the term ‘self-organised criticality’ is hampered by its indiscriminant

use, which has blurred its meaning. Sometimes it is used to label models and natural

systems with particular design features, sometimes for models with a particular (statistical)

phenomenology, sometimes for the phenomenon itself. The literal meaning of the term

refers to its supposed origin: a critical, i.e. scale invariant, phenomenon in a system with

many degrees of freedom reminiscent of a phase transition, yet not triggered by gentle

tuning of a temperature-like control parameter 1 to the critical point, as for example in

the Ising Model, but by self-organisation to that critical point. This self-organisation might

involve a control parameter which is subject to an equation of motion, or it might affect

directly the statistical ensemble sampled by the system.

As SOC became more popular, the meaning of SOC switched from labelling the cause to

labelling the phenomenon, i.e. scale invariance, characterised by power laws in spatiotem-

poral observables and their distributions. 2 As SOC was intended to explain 1/ f noise,

the latter became indicative or even synonymous with SOC. This is the beginning of a

time when the question ‘Is it SOC?’ became meaningless (Sornette, 1994). It broke down

completely when it became common to label anything SOC that bore some resemblance to

its typical features, such as avalanches, thresholds or simply a broad distribution of some

observable, regardless of whether or not there was any signature of scale invariant behaviour

– some disputes in the literature are down to this simple confusion, as not all SOC models

would display SOC.

It can be difficult to keep these different perspectives on SOC apart. Ideally, SOC should

be reserved for the first meaning, a supposed underlying mechanism which keeps a system

at or drives it to a (more or less) ordinary critical point. There is no need to apply the

term SOC to the statistical phenomena, since plenty of terminology from the theory of

phase transitions is available. Characterising certain models as ‘SOC models’, however, is

so undeniably widespread that it would be unrealistic to propose to bar the usage of the

term here, on the understanding that some ‘SOC models’ might ultimately not be governed

by SOC.

There are a few basic ingredients that can be found in every SOC model, summarised

by Jensen (1998, p. 126) as ‘slowly driven, interaction-dominated threshold [(SDIDT)]

systems’. First of all, there are many (discrete) interacting degrees of freedom, usually

structured in space by nearest neighbour or at least local interaction, for example as sites on

a lattice. Apart from some exotic exceptions, all models have a finite number of degrees

of freedom, most suitably captured in the finite size of the lattice. Secondly, the interac-

tion involves a threshold, which represents a very strong non-linearity. In many models

the degrees of freedom can be thought of as a local (dynamical) variable indicating the

amount of local energy, force or particles, which is redistributed among neighbours once

it exceeds a threshold. In other models, sites interact in a certain way only if they are in

1 Sometimes called the ‘tuning parameter’.
2 ‘Distribution’ is used synonymously with ‘probability density function’ in the following, p. 26.
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8 Introduction

particular states. Sites for which the local degree of freedom is below the threshold are said

to be stable, those for which the local degree of freedom is above the threshold are called

active or unstable and those which become unstable once charged are sometimes called

susceptible.

The models are subject to an external drive or driving, which changes or charges the

local variables, continuously or discretely, either everywhere or at one particular point.

The former is often called uniform driving or homogeneous driving (more generally

sometimes global driving) in particular when the dynamical variable is continuous, whereas

no general terminology is established for the latter. Some authors refer to it as local driving,

some call it point driving or boundary driving when it takes place at the boundary of

the lattice. When the driving takes place with uniform probability throughout the lattice

it is often called (stochastic or random) bulk driving, in particular when the driving is

discrete. The amount of charge transferred from the external source is usually chosen to

be small and can be fixed or random. If it involves only one site (or, for that matter, a

few sites), the driving position can be fixed or chosen at random. Stochastic driving and

deterministic driving thus both require further specification as to whether that applies to

position and/or amount. Finally, if the driving does not respect the separation of time scales

(see below), it is normally referred to as continuous driving.

The external driving plays two different rôles, which are distinguished most clearly when

the charges transferred are not conserved under the relaxation described below. On the one

hand, the external drive acts as a supply or a loading mechanism, which allows the system

to respond strongly and very sensitively to an external perturbation. On the other hand, the

external driving acts as such a perturbation, triggering a potentially very large response. In

conserved models like the BTW, MANNA and OSLO Models, but also in the non-conserved

OFC Model, the external driving does both loading and triggering. Otherwise, in most

non-conserved models like the DROSSEL–SCHWABL Forest Fire Model the two are distinct,

whereas in the BS Model loading does not exist as such, because there is nothing to be

loaded and there is no quantity, certainly not a conserved one, being transported in response

to the triggering event.

Once the external charges trigger the threshold, interaction occurs in the form of top-

pling, which reduces or, more generally, changes the local variable but in turn can lead

to the threshold being triggered at neighbouring sites provided they are susceptible. This

relaxation process defined by the microscopic dynamics follows a set of update rules,

which specifies how degrees of freedom are updated as they interact. Analytical approaches

to many models start with an attempt to capture these rules in a mathematical formalism,

which can be analysed using established tools of statistical mechanics. These rules can be

either deterministic or stochastic. The most common form of a stochastic relaxation is that

interacting sites are picked at random among nearest neighbours. Locally and temporarily

the relaxation is therefore anisotropic, even when it is on average (in time, space and/or

across an ensemble) isotropic. Other forms of stochastic relaxation involve the amount

of charge transferred or random values of the degree of freedom at updated sites. The

totality of such interaction or relaxation events is called an avalanche. Avalanching is the

archetypal relaxation mechanism in SOC models and is often considered as the signature
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9 1.2 Basic ingredients

of metastability, as small perturbations due to the external driving can lead to catastrophic

responses involving the entire system.

An SOC model is often described as being driven to the brink of stability (also Sec. 1.3.3).

Some authors distinguish stable states, which respond to external perturbations with small,

local changes, metastable states, 3 which respond with avalanches of possibly system

spanning size, and unstable states, which are still changing under the dynamics. Sometimes

the distinction between stable and metastable is dropped and both are subsumed under stable.

To differentiate the two, the stable states might be labelled as transient and the metastable

ones as recurrent (also Sec. 4.2.1 and Sec. 8.3).

Being so enormously susceptible, the system might be considered as being in a critical

state. Avalanches can be tallied and analysed for their size, duration, the number of sites

involved etc. The resulting histograms can be probed for power laws, the hallmark of (full)

scale invariance. Observables are discussed further in Sec. 1.3.

Any scaling observed in SOC models is usually finite size scaling, since the finiteness

of the lattice is supposed to be the only scale that controls the statistics of the observables.

If there is another tunable scale dominating and cutting off the statistical features of

avalanches, then the system apparently requires explicit tuning and therefore cannot be

called ‘self-organised critical’. However, some widely accepted SOC models, e.g. the DS-

FFM (Sec. 5.2) possess such a second scale, even when it diverges in some ‘trivial’ limiting

procedure. There is widespread confusion as to what amounts to a second scale and what

its consequences are. Generally, competing scales are a necessary condition for non-trivial

scaling, which can occur only in the presence of dimensionless quantities (Sec. 2.3, p. 48

and Sec. 8.1.3, in particular p. 257). In ordinary critical phenomena, such a second scale

needs to be tuned to its particular critical value. If, however, a second scale dominates the

behaviour of a system over its finite size, it generally is not self-organised critical. The

competing scales ultimately succumb to the dominant scale and play a (reduced) rôle in

only a finite range of the observable.

While an avalanche is running, the external driving is stopped, known as the separation

of time scales of driving and relaxation and generally regarded as the key cause of SOC.

Some authors refer to it as slow drive, alluding also to the smallness of the perturbations

caused by the external driving. Separation of time scales is achieved as long as the system

is driven slowly enough, but there is no lower limit, i.e. an SOC system can be driven more

slowly without changing its statistical properties. Separation of time scales is akin to the

thermodynamic limit, in that it does not require tuning of a control parameter to a particular

value that could provide a characteristic scale. Nevertheless, some regard the separation of

time scales as a form of tuning.

The time scale on which an avalanche is resolved into individual events of interacting

sites governed by the microscopic dynamics is the microscopic time scale. As no external

charges arrive during an avalanche, these triggering events can be regarded as infinitely far

apart on the microscopic time scale. On the macroscopic time scale, on the other hand,

the external drive has finite (Poissonian) frequency and avalanches are instantaneous, i.e.

3 Bak et al. (1987) called a metastable state (locally) minimally stable.
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10 Introduction

collapse into a point. Such a complete separation of time scales where one explodes to

infinity from the point of view of the other, which in turn implodes into a point, can often

be realised exactly in a computer implementation of the model, simply by not attempting

to trigger a new avalanche, while one is running. This way, the driving frequency on the

microscopic time scale can be regarded as anything between 0 and the average frequency,

i.e. the inverse of the average duration.

To measure these frequencies and other temporal observables, a microscopic time needs

to be defined explicitly, which is very often not fixed in the rules of the model. In the

case of parallel updating, sites due for an update are ordered in generations and each

generation is dealt with separately, the current generation giving rise to the next. In this

case, the microscopic time simply counts the generations and naturally advances by one

unit for each parallel update. In the case of (random) sequential update, a site is picked

at random from all those due to be updated, of which there are, say, N , and time advances

by 1/N , corresponding to the average time spent on each site in a parallel update. If sites

are updated as if each were subject to a local Poisson process, waiting times between

updates can be drawn at random and added to the microscopic time (Sec. A.6.3). Most

models remain well defined if the updating scheme is changed, and many models that were

originally defined with parallel update are more elegantly defined with random sequential

or Poissonian update (in particular the MANNA Model, Sec. 6.1, and OSLO Model, Sec. 6.3),

which now is very widely used.

Some authors regard the separation of time scales as a form of global supervision or

interaction (Dickman, Vespignani, and Zapperi, 1998) and ‘fire the babysitter’ (Dickman

et al., 2000) by considering a driving frequency that is finite but asymptotically vanishing on

the microscopic time scale. In a finite system, avalanches (normally) have finite duration, so

that a maximum frequency can be found below which the separation of time scales is realised

without global supervision, possibly accepting its occasional but very rare violation. This

maximum frequency is essentially the inverse of the characteristic duration and diverges

with system size much faster than the average duration.

Many models obey an Abelian symmetry which is often understood as an invariance of

the microscopic dynamics under change of the updating order (Sec. 8.3). Consequently, such

models are not uniquely defined on the microscopic time scale and temporal observables

might differ in different implementations. Conservation during updates of interacting sites

in the bulk (known as bulk conservation or local conservation) is a second important

symmetry, which was considered as a necessary ingredient of SOC models very early,

but whose rôle was questioned with the arrival of non-conservative models. The quantity

conserved is normally the totality of the local dynamical variable, such as the total of

the energy or force. Given the external drive, dissipation is necessary for a stationary

state to exist in the presence of bulk conservation. This is often realised by boundary

dissipation at open boundaries, i.e. loss of the otherwise conserved quantity when a

boundary site topples. Bulk conservation in conjunction with boundary dissipation leads

to transport forcing a current through the system, even when it is isotropic. If periodic

boundary conditions apply, for example in order to restore translational variance in a

finite lattice, bulk dissipation can be implemented explicitly and conservation therefore

destroyed.
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11 1.3 Basic observables and observations

Many anisotropic systems, which have a preferred direction at relaxation, can be dealt

with analytically. In totally asymmetric models charges occur in only one direction, so that

a site that charges another one does not become charged in return when the charged site

topples. This effectively suppresses correlations and usually prevents a site from performing

multiple topplings. Such directed models are often exactly solvable.

As mentioned above, SOC was intended to be more than generic scale invariance. To

establish the link to ordinary critical phenomena at a transition between phases with different

symmetries, in some systems a control parameter can be identified, often the energy, force

or particle density (Sornette, 1994, p. 210):

SOC requires that, as a function of a tunable control parameter, one has a phase transition at

some critical point, and that the dynamics of the system brings this parameter automatically

to its critical point without external fine-tuning.

For example, many directed models can be mapped to random walks, eliminating initial

bias (drift) in a process of self-organisation. If it were not for that process or if the system

were placed at criticality by definition there would be no point talking about self-organised

criticality.

In summary, the most basic design elements of an SOC model are: many interacting

degrees of freedom, a local energy or force, a slow external drive and thresholds triggering

a fast internal relaxation mechanism (separation of time scales), giving rise to avalanching.

As Jensen (1998) succinctly sums up: SDIDT – ‘slowly driven, interaction-dominated

threshold systems’. Ideally, an underlying phase transition can be identified which has

a temperature-like control parameter tuned to the critical value by the dynamics of the

system. Whether or not they exhibit (self-organised) criticality is a matter of observables,

to be discussed in the next section.

1.3 Basic observables and observations

The characterisation of avalanches, by size (mass), duration, area covered and radius of

gyration, was at the centre of SOC from the very beginning. If avalanches were com-

piled from (almost) independent patches of toppling sites, their distribution would tend to a

Gaussian. Their (non-trivial) power law distribution therefore signals underlying spatiotem-

poral correlations (Sec. 2.1.3, Sec. 2.3), the direct measurement of which, unfortunately,

is technically difficult (and rather unpopular). The distribution also determines the power

spectrum, the scaling of which was used to characterise models especially in the early

years of SOC. On a more immediate level, power laws do not allow for the definition of

a characteristic scale from within; to half the probability of a certain event size, it has to

be multiplied by a dimensionless constant. If the distribution is, say, exponential, a dimen-

sionful constant, which allows the definition of a characteristic scale, has to be added (also

p. 355).

The size s of an avalanche, sometimes also called the ‘mass’, is usually defined as the

number of topplings that occur in the system between an external charge and complete
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12 Introduction

quiescence, i.e. when all activity has ceased. If the external drive does not lead to an

avalanche, its size is defined as s = 0. Especially in analytic approaches, it can be advan-

tageous to define the avalanche size as the number of charges received throughout the

system, including the external drive, so that the smallest possible avalanche size is greater

than 0. Depending on the details of the model, the number of topplings and the number

of charges have (asymptotically in large avalanches) a fixed ratio, which is complicated

by the convention of whether or not to discount the initial charge (external drive) and by

dissipation at boundary sites or in the bulk.

Kadanoff, Nagel, Wu, and Zhou (1989) introduced a different measure for the avalanche

size, called the drop number as opposed to the flip number introduced above. The

drop number counts the number of particles, energy or force units, that are dissipated

at the boundary. Experimentally easier to capture, it was identified early to be somewhat

problematic (Jensen, Christensen, and Fogedby, 1989) and has since fallen out of common

usage.

The duration T of an avalanche is the microscopic time span from the external charge

by the driving to complete quiescence. Characteristics of the avalanche duration are riddled

with ambiguity when the microscopic time is not defined explicitly. The number of distinct

sites toppling (sometimes sites charged) in an avalanche is its area, A, and the average

distance between every distinct pair of sites toppling during the course of the avalanche is

the radius of gyration, r. The latter has various alternative definitions, which are borrowed

from percolation theory (Stauffer and Aharony, 1994) and polymer science. Of the four

features, the avalanche size is by far the most studied, followed by the duration. Much rarer

is the analysis of the avalanche area and rarer still analysis of the radius of gyration.

1.3.1 Simple scaling

Avalanche features are typically either tallied into histograms or averaged directly in mo-

ments. Measured in an experiment or computer implementation of an SOC model, they

can only estimate characteristics of the full, ‘true’ population average. For example, the

histogram of the avalanche sizes estimates their probability density function (PDF), de-

noted 4 by P (s)(s L). Such PDFs and derived quantities are subject to a finite size scaling

analysis, as commonly used for ordinary critical phenomena (Barber, 1983; Privman and

Fisher, 1984; Cardy, 1988).

Under the finite size scaling (FSS) hypothesis the histogram of the avalanche size s is

expected to follow simple scaling asymptotically for s ≫ s0

P
(s)(s; L) = a(s)s−τ

G
(s)(s/sc(L)) with sc(L) = b(s)LD. (1.1)

The two amplitudes a(s) and b(s) are non-universal metric factors, sc is the upper cutoff

or characteristic avalanche size and s0 is the fixed lower cutoff. Simple scaling is an

asymptote, which approximates the observed histogram increasingly well with increasing

ratio s/s0. Below the constant lower cutoff s0 the histogram follows a non-universal function,

which often depends on the details of the implementation. As opposed to the lower cutoff,

4 Henceforth, a superscript indicates which observable a particular quantity describes.
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