

Cambridge University Press 978-0-521-85331-6 — Principles of Astrophysical Fluid Dynamics Cathie Clarke , Bob Carswell Table of Contents More Information

Contents

Preface	
1 Introduction to concepts	1
1.1 Fluids in the Universe	2
1.2 The concept of a 'fluid element'	4
1.3 Formulation of the fluid equations	5
1.4 Relation between the Eulerian and Lagrangian	
descriptions	7
1.5 Kinematical concepts	8
2 The fluid equations	12
2.1 Conservation of mass	12
2.2 Pressure	14
2.3 Momentum equations	15
2.4 Momentum equation in conservative form: the	
stress tensor and concept of ram pressure	17
3 Gravitation	20
3.1 The gravitational potential	20
3.2 Poisson's equation	22
3.3 Using Poisson's equation	24
3.4 The potential associated with a spherical mass	
distribution	27
3.5 Gravitational potential energy	28
3.6 The virial theorem	30
4 The energy equation	32
4.1 Ideal gases	32
4.2 Barotropic equations of state: the isothermal	
and adiabatic cases	33
4.3 Energy equation	37
4.4 Energy transport	39
4.5 The form of \dot{Q}_{cool}	45

© in this web service Cambridge University Press

Cambridge University Press 978-0-521-85331-6 — Principles of Astrophysical Fluid Dynamics Cathie Clarke , Bob Carswell Table of Contents More Information

vi Contents

5	Hydrostatic equilibrium	46
5.1	Basic equations	46
5.2	The isothermal slab	47
5.3	An isothermal atmosphere with constant g	49
5.4	Stars as self-gravitating polytropes	50
5.5	Solutions for the Lane–Emden equation	52
5.6	The case of $n = \infty$	55
5.7	Scaling relations	56
	Examples of astrophysical interest	60
5.9	Summary: general method for scaling relations	62
6	Propagation of sound waves	63
6.1	Sound waves in a uniform medium	63
6.2	Propagation of sound waves in a stratified	
	atmosphere	68
6.3	General approach to wave propagation	
	problems	73
6.4	Transmission of sound waves at interfaces	74
7	Supersonic flows	77
7.1	Shocks	78
7.2	Isothermal shocks	85
8	Blast waves	89
8.1	Strong explosions in uniform atmospheres	89
	Blast waves in astrophysics and elsewhere	96
8.3	Structure of the blast wave	98
8.4	Breakdown of the similarity solution	102
8.5	The effects of cooling and blowout from	
	galactic disks	104
9	Bernoulli's equation	107
9.1	Basic equation	107
9.2	De Laval nozzle	113
9.3	Spherical accretion and winds	118
9.4	Stellar winds	123
9.5	General steady state solutions	126
0	Fluid instabilities	128
0.1	Convective instability	128
0.2	Rayleigh-Taylor and Kelvin-Helmholtz instabilities	133

Cambridge University Press 978-0-521-85331-6 — Principles of Astrophysical Fluid Dynamics Cathie Clarke , Bob Carswell Table of Contents

More Information

		Contents	vii
10.3	Gravitational instability (Jeans instability)	139	
	Thermal instability	142	
10.5	Method summary	149	
11	Viscous flows	150	
11.1	Linear shear and viscosity	150	
	Navier–Stokes equation	153	
11.3	Evolution of vorticity in viscous flows	157	
	Energy dissipation in incompressible viscous flows Viscous flow through a circular pipe and the	158	
	transition to turbulence	159	
12	Accretion discs in astrophysics	163	
12.1	Derivation of viscous evolution equations for		
	accretion discs	165	
12.2	Viscous evolution equation with constant viscosity	167	
12.3	Steady thin discs	173	
12.4	Radiation from steady thin discs	176	
13	Plasmas	179	
13.1	Magnetohydrodynamic equations	180	
13.2	Simplifying the magnetohydrodynamic equations	183	
13.3	Charge neutrality	184	
13.4	The induction equation and flux freezing		
	approximation	186	
	The dynamical effects of magnetic fields	188	
	Summary	189	
	Waves in Plasmas	190	
13.8	The Rayleigh-Taylor Instability revisited	194	
Арре	endix Equations in curvilinear coordinates	200	
Exer	cises	206	
Books for background and further reading		222	
Index		224	