Principles of Astrophysical Fluid Dynamics

Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook introduces the fluid dynamics necessary to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs.

The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. It has been developed for use by final year undergraduate and starting graduate students of astrophysics, based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge. The book contains over 50 exercises.

CATHIE CLARKE is Reader in Theoretical Astrophysics at the University of Cambridge and Director of Studies in Astrophysics at Clare College. She developed the original course in astrophysical fluid dynamics as part of Part II Astrophysics in 1996 and delivered the course 1996–9. Her research is based on accretion disc theory and star formation (both of which are strongly based on fluid dynamics). She has taught extensively within the University of Cambridge, having also delivered lecture courses in statistical physics, mathematical methods and galactic dynamics, and has supervised for a variety of courses within the Natural Sciences and Mathematics Triposes.

BOB CARSWELL is Professor of Astronomy at the University of Cambridge. He lectured the Part II Astrophysics course on astrophysical fluid dynamics 2000–3, and developed the course notes to reflect a revised syllabus to include accretion discs and some MHD concepts. He has also given courses in relativity to both third-year and fourth-year undergraduates, as well as specialist courses on gaseous nebulae at the postgraduate level. His research relates to quasars, the intergalactic medium, and large-scale structure.

Principles of Astrophysical Fluid Dynamics

Cathie Clarke and Bob Carswell University of Cambridge

CAMBRIDGE

Cambridge University Press 978-0-521-85331-6 — Principles of Astrophysical Fluid Dynamics Cathie Clarke , Bob Carswell Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521853316

© C. Clarke and R. Carswell 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007 First paperback edition (with corrections) 2014

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-85331-6 Hardback ISBN 978-1-107-66691-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

page ix

1	Introduction to concepts	1
1.1	Fluids in the Universe	2
1.2	The concept of a 'fluid element'	4
1.3	Formulation of the fluid equations	5
1.4	Relation between the Eulerian and Lagrangian	
	descriptions	7
1.5	Kinematical concepts	8
2	The fluid equations	12
2.1	Conservation of mass	12
2.2	Pressure	14
2.3	Momentum equations	15
2.4	Momentum equation in conservative form: the	2
	stress tensor and concept of ram pressure	17
3	Gravitation	20
3.1	The gravitational potential	20
3.2	Poisson's equation	22
3.3	Using Poisson's equation	24
3.4	The potential associated with a spherical mass	
	distribution	27
	Gravitational potential energy	28
3.6	The virial theorem	30
4	The energy equation	32
4.1	Ideal gases	32
	Barotropic equations of state: the isothermal	
	and adiabatic cases	33
43		
1.5	Energy equation	37
	Energy equation Energy transport	37 39
4.4		

v

vi Contents

5	Hydrostatic equilibrium	46
5.1	Basic equations	46
5.2	The isothermal slab	47
5.3	An isothermal atmosphere with constant g	49
5.4	Stars as self-gravitating polytropes	50
5.5	Solutions for the Lane–Emden equation	52
	The case of $n = \infty$	55
	Scaling relations	56
	Examples of astrophysical interest	60
5.9	Summary: general method for scaling relations	62
6	Propagation of sound waves	63
6.1	Sound waves in a uniform medium	63
6.2	Propagation of sound waves in a stratified	
	atmosphere	68
6.3	General approach to wave propagation	
	problems	73
6.4	Transmission of sound waves at interfaces	74
7	Supersonic flows	77
7.1	Shocks	78
7.2	Isothermal shocks	85
8	Blast waves	89
8.1	Strong explosions in uniform atmospheres	89
8.2	Blast waves in astrophysics and elsewhere	96
8.3	Structure of the blast wave	98
8.4	Breakdown of the similarity solution	102
8.5	The effects of cooling and blowout from	
	galactic disks	104
9	Bernoulli's equation	107
9.1	Basic equation	107
9.2	De Laval nozzle	113
9.3	Spherical accretion and winds	118
9.4	Stellar winds	123
9.5	General steady state solutions	126
10	Fluid instabilities	128
	Convective instability	128
10.2	Rayleigh-Taylor and Kelvin-Helmholtz instabilities	133

CAMBRIDGE

Cambridge University Press 978-0-521-85331-6 — Principles of Astrophysical Fluid Dynamics Cathie Clarke , Bob Carswell Frontmatter <u>More Information</u>

Contents vii

10.4	Gravitational instability (Jeans instability) Thermal instability Method summary	139 142 149
11	Viscous flows	150
11.1	Linear shear and viscosity	150
11.2	Navier–Stokes equation	153
11.3	Evolution of vorticity in viscous flows	157
11.4	Energy dissipation in incompressible viscous flows	158
11.5	Viscous flow through a circular pipe and the	
	transition to turbulence	159
12	Accretion discs in astrophysics	163
12.1	Derivation of viscous evolution equations for	
	accretion discs	165
	Viscous evolution equation with constant viscosity	167
	Steady thin discs	173
12.4	Radiation from steady thin discs	176
13	Plasmas	179
	Plasmas Magnetohydrodynamic equations	179 180
13.1 13.2	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations	
13.1 13.2 13.3	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality	180
13.1 13.2 13.3	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing	180 183
13.1 13.2 13.3 13.4	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation	180 183 184 186
13.1 13.2 13.3 13.4 13.5	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields	180 183 184 186 188
13.1 13.2 13.3 13.4 13.5 13.6	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields Summary	180 183 184 186 188 189
13.1 13.2 13.3 13.4 13.5 13.6 13.7	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields Summary Waves in Plasmas	180 183 184 186 188 189 190
13.1 13.2 13.3 13.4 13.5 13.6 13.7	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields Summary	180 183 184 186 188 189
13.1 13.2 13.3 13.4 13.5 13.6 13.7	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields Summary Waves in Plasmas The Rayleigh-Taylor Instability revisited	180 183 184 186 188 189 190
13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields Summary Waves in Plasmas The Rayleigh-Taylor Instability revisited endix Equations in curvilinear coordinates	180 183 184 186 188 189 190 194
13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 Appe Exerc	Magnetohydrodynamic equations Simplifying the magnetohydrodynamic equations Charge neutrality The induction equation and flux freezing approximation The dynamical effects of magnetic fields Summary Waves in Plasmas The Rayleigh-Taylor Instability revisited endix Equations in curvilinear coordinates	180 183 184 186 188 189 190 194 200

Preface

The material in this book is based on lecture notes of a course on astrophysical fluid dynamics which has been given for several years to third-year students at the University of Cambridge. There are several excellent books which cover fluid dynamics from a terrestrial standpoint, but very few provide a full introduction to the concepts and methods used to deal with the highly compressible flows which arise in astrophysical contexts. Our aim with this book is to provide just such an introduction, and we hope that it will also serve as a reference volume for advanced undergraduate and graduate students.

Several people have provided input at various stages of the preparation of this book. In particular we thank Jim Pringle, Donald Lynden-Bell and Giuseppe Lodato for their help. We are also grateful to the students who have taken the course at Cambridge for correcting typographical errors in the lecture notes, drawing our attention to parts where the description was less clear than it should have been, and helping us to develop the exercises.