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Chapter 1

Introduction to concepts

Stated most simply, fluids are ‘things that flow’. This definition

distinguishes between liquids and gases (both fluids) and solids, where

the atoms are held more or less rigidly in some form of lattice. Of

course, it is always possible to think of substances whose status is

ambiguous in this regard, such as those, normally regarded as solids,

which exhibit ‘creep’ over sufficiently long timescales (glass would

fall into this category). Such borderline cases do not undermine the

fact that the vast majority of substances can be readily classified as

fluid or not. If they are fluids, then it is important to understand the

general problem of how they flow, and under what circumstances they

attain equilibrium (i.e. do not flow). These issues, in an astronomical

context, form the subject of this book.

There is also a more subtle point about the sorts of systems that can

be described as fluids. Although fluids are always in practice composed

of particles at a microscopic level, the equations of hydrodynamics

treat the fluid as a continuous medium with well-defined macroscopic

properties (e.g. pressure or density) at each point. Such a description

therefore presupposes that we are dealing with such large numbers of

particles locally that it is meaningful to average their properties rather

than following individual particle trajectories. In a similar vein, we

may also, for example, treat the dynamics of stars in galaxies as a

form of fluid dynamical problem: in this case the ‘particles’ are stars

rather than atoms or molecules but the same principles may be used to

determine the mean properties of the stars (such as velocity or density)

in each region.

In this book, however, we will mainly be concerned with con-

ventional fluids, i.e. liquids and gases. In fact, since the liquid state

is hardly encountered apart from in the high pressure environments
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2 Introduction to concepts

of planetary surfaces and interiors, our focus will very much be on

the gas phase (although some of these gases, such as the degenerate

gases that compose neutron stars and white dwarfs, bear little resem-

blance at a microscopic level to conventional gases under laboratory

conditions). However, the key property of all gases, as opposed to

liquids, is that they are far more compressible. Although in many

terrestrial applications involving subsonic flows, even gases behave

approximately incompressibly, this is not the case in astronomical con-

texts where flows are frequently accelerated (often by gravity) to high

Mach number. This book is therefore not able to make the simplifying

assumption, often introduced at an early stage of standard texts on

terrestrial fluid mechanics, that the flow is incompressible. Likewise

we cannot assume that the battery of techniques for the solution of

incompressible flows can be simply generalised to the present case.

1.1 Fluids in the Universe

The baryonic matter in the Galaxy (i.e. conventional matter composed

of protons and neutrons) is divided between stars and distributed gas

roughly in the ratio 5:1. For the Universe as a whole the ratio is

uncertain, but the gas fraction is considerably higher.

Stars are gaseous bodies (mainly hydrogen and helium) with tem-

peratures that range between millions of kelvin in their centres, where

nuclear reactions occur, and thousands of degrees at the surface. An

easily remembered property of the Sun is that its mean density is the

same as that of water, but this statistic does not convey its strong inter-

nal density stratification (the density at the centre exceeds that at the

photosphere – visible surface of the Sun – by 11 orders of magnitude).

For some purposes, the interior of stars may be regarded as static,

i.e. in a state of force balance between gravity and outwardly directed

pressure gradients. In practice, the gas in many stars is subject to inter-

nal motions such as convection currents and low amplitude internal

oscillations (acoustic modes, see Figure 1.1). Above the photosphere,

the gas density falls with increasing height, and the temperature rises,

attaining 30 000K in the so-called chromospheric region where many

stellar emission lines originate. At larger distances still, the gas may

be magnetically heated to temperatures of around 106K, this coro-

nal region being a strong source of X-rays. We however caution that

the low densities in these latter regions mean that a fluid dynamical

treatment is not necessarily appropriate (see Section 1.2).

The other main fluid component in the Universe, the distributed

gas in the interstellar medium (ISM) and intergalactic medium (IGM),

is much more diverse in its properties. For example, the mean density
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1.1 Fluids in the Universe 3

Fig. 1.1. A cut-away

illustration showing a

spherical harmonic mode of

oscillation for acoustic waves

in the Sun. (Illustration from

Global Oscillation Network

Group/National Solar

Observatory/AURA/NSF)

of gas in the Milky Way is the easily remembered 1 particle per

cubic centimetre, or a million per cubic metre (extraordinarily dilute

compared with 2�7×1025 particles per cubic metre of gas at standard

terrestrial pressure and temperature). This figure however averages over

a rich multi-phase medium, comprising warm atomic gas (at∼104K), a

hot phase (at 106K) heated mainly by supernova explosions and a cold

molecular phase, which may be as cool as 10K if well shielded from

radiation from bright stars. The density contrasts between these phases

are extreme, from ∼1000 particles per cubic metre for the hot phase to

105–106 particles per cubic metre for the warm, atomic phase to ∼108

particles per cubic metre as a mean for molecular clouds; the densest

cores within these clouds have densities in excess of 1013 particles per

cubic metre. Outside galaxies the densities can be considerably lower,

with large regions containing �1 particle per cubic metre.

Although stars, the ISM and IGM together constitute the bulk of

the fluids in the Universe, there are a number of other examples of

fluids of astrophysical interest. These include stellar winds, jets and

accretion discs on a wide range of scales. Nor should it be forgotten

that an important category of stars – the white dwarfs and neutron

stars – are also fluid, though with an equation of state – relation

between pressure, density and temperature – that is quite different

from conventional gases under laboratory conditions. Similarly, the

internal structure of the giant planets may be determined as a fluid

dynamical problem, although here there are considerable uncertainties
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4 Introduction to concepts

surrounding the correct equation of state for hydrogen under extreme

conditions of density and pressure in the relevant temperature range.

The above thumbnail sketch has stressed the diversity of fluids in

the Universe and has perhaps suggested that their study will involve

consideration of much complex microphysics. One of the beauties of

fluid dynamics is however the way that the microphysical complexity

is all contained in a single parameter – the equation of state. Once

armed with an equation of state, the fluid dynamicist can simply insert

this into the general equations of fluid dynamics. This is not to suggest

that the outcome of this exercise is necessarily simple, but there is a

pleasing generality that runs through the subject. We will, for example,

be able to deduce the structure of white dwarfs and neutron stars

as readily as of stars composed of conventional gas, simply because

they each have well-defined equations of state and in each case we

can consider the stars to be in a state of equilibrium. However, this

discussion anticipates much of the contents of later chapters. Before

we can embark on deriving the fluid equations, it is necessary that we

now introduce some important fluid dynamical concepts.

1.2 The concept of a ‘fluid element’

The fluid equations are based on the concept of a ‘fluid element’, i.e.

a region over which we can define local variables (such as density,

temperature, etc.). The size of the region is assumed to be such that:

(i) It is small enough that we can ignore systematic variations across

it for any variable we are interested in, i.e. the region size �region is

much smaller than a scale length for change of any relevant variable q

(where a scale length is the scale over which q varies by order unity).

So

�region � �scale ∼
q

��q�
� (1.1)

(ii) It is large enough that the element contains sufficient particles

for us to ignore fluctuations due to the finite number of particles

(‘discreteness noise’). Thus if the number density of particles per unit

volume is n, we require that

n�3region � 1� (1.2)

The above two criteria must be met by any system that is describable

as a fluid. In addition, collisional fluids must satisfy the following

criterion:
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1.3 Formulation of the fluid equations 5

(iii) The fluid element is large enough that the constituent particles

‘know’ about local conditions through colliding with each other, so if

the mean free path is �, we require that

�region � �� (1.3)

What do we mean by a collisional fluid? The essential point is

that if the particles in a fluid interact with each other (which does not

necessarily imply that they physically collide), then they will attain a

distribution of, say, particle speed that maximises the entropy of the

system at that temperature. (For this discussion we can simply regard

the entropy of a system as being a measure of the number of microscop-

ically distinct configurations that correspond to a given macroscopic

property of the fluid locally.) Therefore a collisional fluid at a given

temperature and density will have a well-defined distribution of particle

speeds in the local rest frame, and hence a corresponding pressure. Thus

one can derive an equation of state (relationship between density, tem-

perature and pressure) for a collisional fluid. Almost all the fluids we

consider in this book, be they ideal gases or degenerate, are collisional

fluids with corresponding equations of state. However, as noted above,

we can also consider systems of orbiting stars in a galaxy, or grains in

Saturn’s rings, as being fluids, even though the particles now do not

interact sufficiently frequently to satisfy criterion (1.3) above. In this

case, the distribution of particle speeds locally does not correspond to

an entropy maximum but instead depends on the initial distribution of

particle speeds. The fact that one cannot write down an equation of state

for collisionless systems means that it is a hard problem, whose solu-

tion is non-unique, to find, for example, the structure of stellar orbits

in a galaxy in equilibrium. In this book we will avoid this difficulty

by considering collisional fluids (i.e. conventional liquids and gases).

It should be stressed that a fluid element is purely a conceptual

entity – �region does not enter into the fluid equations.However, if a system

is to be described by the fluid equations, its properties must be such that

there are values of �region that simultaneously satisfy the conditions above.

1.3 Formulation of the fluid equations

There are two (sensible) approaches to formulating the equations for

mass density, momentum and energy in a fluid:

(i) Eulerian description

Consider a small volume at a fixed spatial position. The fluid flows

through the volume with physical variables specified as functions of

time and the (fixed) position of the small volume: density �= ��r� t�,
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6 Introduction to concepts

temperature T = T�r� t�, etc. The change of any measurable quantity

as a function of time at that position is �/�t of the quantity, evaluated

at the fixed position.

(ii) Lagrangian description

In this approach one chooses a particular fluid element and examines

the change in variables (density, temperature, etc.) in that particular

element. So the (spatial) reference system is comoving with the fluid.

Thus one might examine the behaviour of � = ��a� t�, where a is a

label for a particular fluid element – which might be the coordinates at

a chosen initial time, for example. The time derivative is now a partial

one at a fixed a (i.e. for a fixed bit of the fluid), and the rate of change

with respect to time for a fixed element is denoted D/Dt.

In the Lagrangian description, position is not an independent vari-

able but instead r = r�a� t�. The Lagrangian description refers to the

world as seen by an observer riding on a fluid element (e.g. a river

viewed from a boat adrift on it); the Eulerian one refers to the world

as seen at a fixed spatial position (e.g. a river viewed from the bank).

The Lagrangian approach is useful if the path of an individual

element is important, e.g. when a particular element has some property

which distinguishes it from all the others. Usually this is not the case;

however, one can think of particular instances where it is important in

astronomy (e.g. tracing the trajectory of a parcel of gas that has been

enriched by heavy elements as it is ejected into the interstellar medium

by a supernova). The Eulerian approach is usually more useful if the

motion of individual fluid elements is not of interest. It is particularly

useful for steady flows, i.e. those where the quantities at a given

position do not change. Then �/�t of all variables = 0 everywhere.

Steady flows have no special properties in Lagrangian descriptions

since in a steady flow an individual element still changes its properties

in general as it goes from place to place.

This conceptual split between the Eulerian and Lagrangian formu-

lations translates into two entirely distinct ways of simulating fluid

dynamical problems on a computer. Eulerian codes set up a grid of

fixed boxes and compute the changes of all variables in each box

as the flow evolves. Lagrangian codes instead set up an ensemble of

particles which represent fluid elements and follow the trajectories of

the particles in the flow. There are advantages and disadvantages to

each approach which are being much discussed at present in relation

to simulating the formation of stars and galaxies, two highly topi-

cal problems in astrophysical fluid dynamics. Eulerian codes in their

simplest form have the disadvantage that you have to decide at the

beginning of the calculation how you are going to distribute your grid

cells, i.e. in what regions of the flow do you want fine gridding (high
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1.4 Relation between the Eulerian and Lagrangian descriptions 7

resolution). However, as the flow evolves you might need high reso-

lution in a region that you would not have predicted at the outset of

the calculation, unless your problem has very regular symmetry. The

Lagrangian approach circumvents this difficulty since high resolution

will automatically be achieved in high density regions of the flow

where lots of particles end up. However, the problem with using par-

ticles to model a continuous fluid is then how to compute the density

at each point (number of particles divided by some sampling volume

is an obvious approach, but then the density calculated might fluctuate

unphysically as particles enter and leave the sampling volume). Much

work has gone into devising codes that minimise the inherent noisi-

ness of particle based methods, particularly a class of codes known as

Smoothed Particle Hydrodynamics (SPH). In the meantime, Eulerian

codes are becoming more cunning through developing the capability of

reconfiguring the grid automatically during the calculation in order to

achieve high resolution where it is needed (Adaptive Mesh Refinement

methods: AMR). There is a large and evolving literature on computing

methods for fluid problems – see e.g. the Von Karman Institute Lecture

Series Monograph: Computational Fluid Dynamics.

1.4 Relation between the Eulerian and
Lagrangian descriptions

Consider any quantity Q (which may be a scalar or a vector) in a fluid

element which is at position r at time t. At time t+�t the element is

at r+�r, and then, straight from the definition

DQ

Dt
= lim

�t→0

[

Q�r+�r� t+�t�−Q�r� t�

�t

]

� (1.4)

The numerator is

Q�r+�r� t+�t�−Q�r� t�=Q�r� t+�t�−Q�r� t�

+Q�r+�r� t+�t�−Q�r� t+�t� (1.5)

which is, to first order in �r, �t,

=
�Q�r� t�

�t
�t+�r ·�Q�r� t+�t�� (1.6)

and so, expanding the second term,

=
�Q�r� t�

�t
�t+�r ·

[

�Q�r� t�+
��Q

�t
�t · · ·

]

� (1.7)

The �r · ��Q

�t
�t term is of second order in small quantities, so, in the

limit as �t and �r → 0,
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8 Introduction to concepts

DQ

Dt
=

�Q

�t
+u ·�Q� (1.8)

where u is the fluid velocity.

The Lagrangian time derivative has a term due to the rate of

change at a fixed location (i.e. the Eulerian time derivative) plus a

term due to the fact that the fluid element has moved to a new location

where the variable has a different value. The extra term is known as

the ‘convective derivative’.

As a reminder, for scalar Q, u ·�Q in Cartesian, spherical polar

and cylindrical polar coordinates is

u ·�Q= ux

�Q

�x
+uy

�Q

�y
+uz

�Q

�z

= ur

�Q

�r
+

u�

r

�Q

��
+

u�

r sin �

�Q

��

= uR

�Q

�R
+uz

�Q

�z
+

u�

R

�Q

��
�

If Q is a vector, then in Equation (1.8) u ·�Q is also a vector,

each component of which is u ·� acting on each component of Q. So,

in Cartesians, where Q= �Qx�Qy�Qz�, we have

u ·�Q=

(

ux

�Qx

�x
+uy

�Qx

�y
+uz

�Qx

�z
�ux

�Qy

�x
+uy

�Qy

�y
+uz

�Qy

�z
�

ux

�Qz

�x
+uy

�Qz

�y
+uz

�Qz

�z

)

� (1.9)

For these expressions in spherical polars, or cylindrical coordinates,

see Appendix.

1.5 Kinematical concepts

Kinematics is the study of particle trajectories. It is distinct from

dynamics in that kinematics does not concern itself with the origin

of particle motions but just analyses various properties of particles

moving in a known velocity field u�r� t� (i.e. a vector field defined

everywhere in Eulerian coordinates).

(i) Streamlines

The defining feature is that the tangent to a streamline at any point gives

the direction of the velocity at that point. The tangent to a curve with

parameter s is given in Cartesian coordinates by the vector � dx
ds
� dy

ds
� dz
ds
�,

so streamlines are determined by the following system of equations:
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1.5 Kinematical concepts 9

dx

ux

=
dy

uy

=
dz

uz

� (1.10)

where the u are evaluated everywhere at the particular time of interest.

In spherical polars the form is slightly different:

dr

ur

=
r d�

u�

=
r sin � d�

u�

� (1.11)

just reflecting the fact that we chose to have each component of u as the

velocity projection in the orthogonal coordinate increment directions,

u= � dr
dt
� r d�

dt
� r sin � d�

dt
�.

In cylindrical polars:

dR

uR

=
dz

uz

=
Rd�

u�

� (1.12)

(ii) Particle paths

The paths of individual particles as functions of time satisfy

dr

dt
= u�r� t�� (1.13)

The constant of integration labels the different particles – for example

you might use r�t = 0� to label a particle. The particle paths follow

the streamlines for small times relative to the start time, since the u

may be treated as a constant then, but if the flow is time dependent

then the streamlines and the particle paths are not the same.

The equations of particle paths in various coordinate systems are

as follows:

Cartesian:

dx

dt
= ux�

dy

dt
= uy�

dz

dt
= uz�

Spherical:

dr

dt
= ur � r

d�

dt
= u�� r sin �

d�

dt
= u��

Cylindrical:

dR

dt
= uR�

dz

dt
= uz� R

d�

dt
= u��

(iii) Streaklines

A streakline is the line (at a particular time t) joining the instantaneous

positions of all the particles which have ever passed (and will ever
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10 Introduction to concepts

pass) through a particular point. The way to visualise this is to think

of all particles passing through a given point being dyed red as they

do so: the streakline is the resulting red line (for example, these are

the lines you see in some wind tunnel experiments).

The equations of a streakline involve determining what subset of

particles ever pass through a particular point r0, i.e. for what particle

labels a is r�a� t� = r0 for some value of t? The streakline is then

r�a�0�, where a ranges through all the values satisfying the condition,

and r0 labels each streakline.

Note that for steady flows streamlines, streaklines and particle

paths are the same. For a steady flow, �
�t
= 0, so every particle passing

through a given point follows the same path.

For an example where they are different we need a non-steady

flow. Suppose we have a flow where, for t < 0, u = �1�0�0�, and for

t > 0 u= �0�1�0�. The streamlines are shown in Figure 1.2.

Fig. 1.2. Streamlines for t < 0

(left) and t > 0 (right).

The particle paths reflect this change in velocity:

Fig. 1.3. Particle paths, where

the change in direction occurs

at t = 0.
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