
1 Introduction

1.1 CFD Activity

Computational fluid dynamics (CFD) is concerned with numerical solution of dif-
ferential equations governing transport of mass, momentum, and energy in moving
fluids. CFD activity emerged and gained prominence with availability of com-
puters in the early 1960s. Today, CFD finds extensive usage in basic and applied
research, in design of engineering equipment, and in calculation of environmental
and geophysical phenomena. Since the early 1970s, commercial software packages
(or computer codes) became available, making CFD an important component of
engineering practise in industrial, defence, and environmental organizations.

For a long time, design (as it relates to sizing, economic operation, and safety) of
engineering equipment such as heat exchangers, furnaces, cooling towers, internal
combustion engines, gas turbine engines, hydraulic pumps and turbines, aircraft
bodies, sea-going vessels, and rockets depended on painstakingly generated empir-
ical information. The same was the case with numerous industrial processes such
as casting, welding, alloying, mixing, drying, air-conditioning, spraying, environ-
mental discharging of pollutants, and so on. The empirical information is typically
displayed in the form of correlations or tables and nomograms among the main
influencing variables. Such information is extensively availed by designers and
consultants from handbooks [55].

The main difficulty with empirical information is that it is applicable only to
the limited range of scales of fluid velocity, temperature, time, or length for which
it is generated. Thus, to take advantage of economies of scale, for example, when
engineers were called upon to design a higher capacity power plant, boiler furnaces,
condensers, and turbines of ever higher dimensions had to be designed for which
new empirical information had to be generated all over again. The generation of
this new information was by no means an easy task. This was because the informa-
tion applicable to bigger scales had to be, after all, generated via laboratory-scale
models. This required establishment of scaling laws to ensure geometric, kinematic,
and dynamic similarities between models and the full-scale equipment. This activity
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2 INTRODUCTION

required considerable experience as well as ingenuity, for it is not an easy matter
to simultaneously maintain the three aforementioned similarities. The activity had
to, therefore, be supported by flow-visualization studies and by simple (typically,
one-dimensional) analytical solutions to equations governing the phenomenon un-
der consideration. Ultimately, experience permitted judicious compromises. Being
very expensive to generate, such information is often of a proprietary kind. In more
recent times, of course, scaling difficulties are encountered in the opposite direction.
This is because electronic equipment is considerably miniaturised and, in mate-
rials processing, for example, the more relevant phenomena occur at microscales
(even molecular or atomic scales where the continuum assumption breaks down).
Similarly, small-scale processes occur in biocells.

Clearly, designers need a design tool that is scale neutral. The tool must be
scientific and must also be economical to use. An individual designer can rarely, if
at all, acquire or assimilate this scale neutrality. Fortunately, the fundamental laws of
mass, momentum, and energy, in fact, do embody such scale-neutral information.
The key is to solve the differential equations describing these laws and then to
interpret the solutions for practical design.

The potential of fundamental laws (in association with some further empiri-
cal laws) for generating widely applicable and scale-neutral information has been
known almost ever since they were invented nearly 200 years ago. The realisation
of this potential (meaning the ability to solve the relevant differential equations),
however, has been made possible only with the availability of computers. The past
five decades have witnessed almost exponential growth in the speed with which
arithmetic operations can be performed on a computer.

By way of reminder, we note that the three laws governing transport are the
following:

1. the law of conservation of mass (transport of mass),
2. Newton’s second law of motion (transport of momentum), and
3. the first law of thermodynamics. (transport of energy).

1.2 Transport Equations

The aforementioned laws are applied to an infinitesimally small control volume
located in a moving fluid. This application results in partial differential equations
(PDEs) of mass, momentum and energy transfer. The derivation of PDEs is given in
Appendix A.1 Here, it will suffice to mention that the law of conservation of mass is
written for a single-component fluid or for a mixture of several species. When ap-
plied to a single species of the mixture, the law yields the equation of mass transfer
when an empirical law, namely, Fick’s law of mass diffusion (m ′′

i = −ρ D ∂ω/∂xi ),

1 The reader is strongly advised to read Appendix A to grasp the main ideas and the process of
derivations.
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1.2 TRANSPORT EQUATIONS 3

is invoked. Newton’s second law of motion, combined with Stokes’s stress laws,
yields three momentum equations for velocity in directions x j (j = 1, 2, 3). Similarly,
the first law of thermodynamics in conjunction with Fourier’s law of heat conduction
(qi,cond = −K ∂T /∂xi ) yields the so-called energy equation for the transport of tem-
perature T or enthalpy h. Using tensor notation, we can state these laws as follows:

Conservation of Mass for the Mixture

∂ρm

∂t
+ ∂(ρm u j )

∂x j
= 0, (1.1)

Equation of Mass Transfer for Species k

∂(ρm ωk)

∂t
+ ∂(ρm u j ωk)

∂x j
= ∂

∂x j

[
ρm Deff

∂ωk

∂x j

]
+ Rk, (1.2)

Momentum Equations ui (i = 1, 2, 3)

∂(ρm ui )

∂t
+ ∂(ρm u j ui )

∂x j
= ∂

∂x j

[
µeff

∂ui

∂x j

]
− ∂p

∂xi
+ ρm Bi + Sui , (1.3)

Energy Equation – Enthalpy Form

∂(ρm h)

∂t
+ ∂(ρm u j h)

∂x j
= ∂

∂x j

[
keff

C pm

∂h

∂x j

]
+ Q′′′, (1.4)

where enthalpy h = C pm (T − Tref), and

Energy Equation – Temperature Form

∂(ρm T )

∂t
+ ∂(ρm u j T )

∂x j
= ∂

∂x j

[
keff

C pm

∂T

∂x j

]
+ Q′′′

C pm
. (1.5)

In these equations, the suffix m refers to the fluid mixture. For a single-
component fluid, the suffix may be dropped and the equation of mass transfer
becomes irrelevant. Similarly, the suffix eff indicates effective values of mass dif-
fusivity D, viscosity µ, and thermal conductivity k. In laminar flows, the values
of these transport properties are taken from property tables for the fluid under
consideration. In turbulent flows, however, the transport properties assume values
much in excess of the values ascribed to the fluid; moreover, the effective transport
properties turn out to be properties of the flow [39], rather than those of the fluid.

From the point of view of further discussion of numerical methods, it is indeed
a happy coincidence that the set of equations [(1.1)–(1.5)] can be cast as a single
equation for a general variable �. Thus,

∂(ρm �)

∂t
+ ∂(ρm u j �)

∂x j
= ∂

∂x j

[

eff

∂�

∂x j

]
+ S�. (1.6)
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4 INTRODUCTION

Table 1.1: Generalised representation of transport equations.

Equation Φ Γeff (exch. coef.) SΦ (net source)

1.1 1 0 0
1.2 ωk ρm Deff Rk

1.3 ui µeff −∂p/∂xi + ρm Bi + Sui

1.4 h keff / C pm Q′′′

1.5 T keff / C pm Q′′′ / C pm

The meanings of 
eff and S� for each � are listed in Table 1.1. Equation 1.6 is
called the transport equation for property �. The rate of change (or time derivative)
term is to be invoked only when a transient phenomenon is under consideration.
The term ρm � denotes the amount of extensive property available in a unit volume.
The convection (second) term accounts for transport of � due to bulk motion. This
first-order derivative term is relatively uncomplicated but assumes considerable
significance when stable and convergent numerical solutions are to be economically
obtained. This matter will become clear in Chapter 3. Both the transient and the
convection terms require no further modelling or empirical information.

The greatest impediment to obtaining physically accurate solutions is offered by
the diffusion and the net source (S ) terms because both these terms require empirical
information. In laminar flows, the diffusion term represented by the second-order
derivative offers no difficulty because 
, being a fluid property, can be accurately
determined (via experiments) in isolation of the flow under consideration. In tur-
bulent (or transitional) flows, however, determination of 
eff requires considerable
empirical support. This is labelled as turbulence modelling. This extremely com-
plex phenomenon has attracted attention for over 150 years. Although turbulence
models of adequate generality (at least, for specific classes of flows) have been pro-
posed, they by no means satisfy the expectations of an equipment designer. These
models determine 
eff from simple algebraic empirical laws. Sometimes, 
eff is also
determined from other scalar quantities (such as turbulent kinetic energy and/or its
dissipation rate) for which differential equations are constituted. Fortunately, these
equations often have the form of Equation 1.6.

The term net source implies an algebraic sum of sources and sinks of �. Thus,
in a chemically reacting flow (combustion, for example), a given species k may
be generated via some chemical reactions and destroyed (or consumed) via some
others and Rk will comprise both positive and negative contributions. Also, some
chemical reactions may be exothermic, whereas others may be endothermic, making
positive and negative contributions to Q′′′. Similarly, the term Bi in the momentum
equations may represent a buoyancy force, a centrifugal and/or Coriolis force, an
electromagnetic force, etc. Sometimes, Bi may also represent resistance forces.
Thus, in a mixture of gas and solid particles (as in pulverised fuel combustion), Bi

will represent the drag offered by the particles on air, or, in a fluid flow through a
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1.3 NUMERICAL VERSUS ANALYTICAL SOLUTIONS 5

densely filled medium (a porous body or a shell-and-tube geometry), the resistance
will be a function of the porosity of the medium. Such empirical resistance laws are
often determined from experiments. The Sui terms represent viscous terms arising
from Stokes’s stress laws that are not accounted for in the ∂

∂x j
[µeff

∂ui

∂x j
] term in

Equation 1.3.

1.3 Numerical Versus Analytical Solutions

Analytical solutions to our transport equations are rarely possible for the following
reasons:

1. The equations are three-dimensional.
2. The equations are strongly coupled and nonlinear.
3. In practical engineering problems, the solution domains are almost always

complex.

The equations, however, can be made amenable to analytical solutions when
simplified through assumptions. In a typical undergraduate program, students de-
velop extensive familiarity with such analytical solutions that can be represented
in closed form. Thus, in a fluid mechanics course, for example, when fully devel-
oped laminar flow in a pipe is considered, a student is readily able to integrate the
simplified (one-dimensional) momentum equation to obtain a closed-form solution
for the streamwise velocity u as a function of radius r. The assumptions made are
as follows: The flow is steady and laminar, it is fully developed, it is axisymmetric,
and fluid properties are uniform. The solution is then interpreted to yield the scale-
neutral result f × Re = 16. The friction factor f is a practically useful quantity
that enables calculation of pumping power required to force fluid through a pipe.
Similarly, in a heat transfer course, a student learns to calculate reduction of heat
transfer rate when insulation of a given thickness is applied to a pipe. In this case,
the energy equation is simplified and the assumptions are as follows: Heat transfer is
radial and axi symmetric, steady state prevails, and the insulation conductivity may
be constant and there is no generation or dissipation of energy within the insulation.

In both these examples, the equations are one dimensional. They are, there-
fore, ordinary differential equations (ODEs), although the original transport equa-
tions were PDEs. In many situations, in spite of the assumptions, the governing
equations cannot be rendered one dimensional. Thus, the equations of a steady,
two-dimensional velocity boundary layer or that of one-dimensional unsteady heat
conduction are partial differential equations. It is important to recognise, how-
ever, that there are no direct solutions to partial differential equations. To obtain
solutions, the PDEs are always first converted to ODEs (usually more in number
than the original PDEs) and the latter are solved by integration. Thus, in an un-
steady conduction problem, the ODEs are formed by the method of separation of
variables, whereas, for the two-dimensional velocity boundary layer, the ODE is
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6 INTRODUCTION

formed by invoking a similarity variable. In such circumstances, often the solution
is in the form of a series. We assume, of course, that the reader is familiar with the
restrictive circumstances (often of significant practical consequence) under which
such analytical solutions are constructed.

Analytical solutions obtained in the manner described here are termed exact
solutions. They are applicable to every point of the time and/or space domain. The
solutions are also called continuous solutions. All the aforementioned solutions are
well covered in an undergraduate curriculum and in textbooks (see, for example,
[34, 80, 88]).

Unlike analytical solutions, numerical solutions are obtained at a few chosen
points within the domain. They are therefore called discrete solutions. Numerical
solutions are obtained by employing numerical methods. The latter are really an
intermediary between the physics embodied in the transport equations and the
computers that can unravel them by generating numerical solutions. The process
of arriving at numerical solutions is thus quite different from the process by which
analytical solutions are developed.

Before describing the essence of numerical methods, it is important to note
that these methods, in principle, can overcome all three aforementioned imped-
iments to obtaining analytical solutions. In fact, the history of CFD shows that
numerical methods have been evolved precisely to overcome the impediments in
the order of their mention. Thus, the earliest numerical methods dealt with one-
dimensional equations for which analytical solutions may or may not be possible.
Methods for two-dimensional transport equations, however, had to incorporate sub-
stantially new features. In spite of these new features, many methods applicable to
two-dimensional coupled equations could not be extended to three-dimensional
equations. Similarly, the earlier methods were derived for transport equations cast
in only orthogonal co-ordinates (Cartesian, cylindrical polar, or spherical). Later,
however, as computations over complex domains were attempted, the equations
were cast in completely arbitrary curvilinear (ξ1, ξ2, ξ3) coordinates. This led to
development of an important branch of CFD, namely, numerical grid generation.
With this development, domains of arbitrary shape could be mapped such that
the coordinate lines followed the shape of the domain boundary. Today, complex
domains are mapped by yet another development called unstructured mesh gener-
ation. In this, the domain can be mapped by a completely arbitrary distribution of
points. When the points are connected by straight lines, one obtains polygons (in
two dimensions) and polyhedra (in three dimensions). Several methods (as well as
packages) for unstructured mesh generation are now available.

1.4 Main Task

It is now appropriate to list the main steps involved in arriving at numerical solutions
to the transport equation. To enhance understanding, an example of an idealised
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1.4 MAIN TASK 7
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Figure 1.1. Typical two-dimensional domain.

combustion chamber of a gas-turbine engine will be considered.

1. Given the flow situation of interest, define the physical (or space) domain of
interest. In unsteady problems, the time domain is imagined. Figure 1.1 shows
the domain of interest of the idealised chember. Fuel and air streams, separated
by a lip wall, enter the chamber at the inflow boundary. The cross section of the
chamber is taken to be a perfect circle so that a symmetry boundary coinciding
with the axis is readily identified. The enclosing wall is solid and the burnt
products of combustion leave through the exit boundary. Because the situation
is idealised as a two-dimensional axisymmetric domain that will involve fluid
recirculation, there are four boundaries of interest: inflow, wall, symmetry, and
exit.

2. Select transport equations with appropriate diffusion and source laws. Define
boundary conditions on segments of the domain boundary for each variable �.
Also, define the fluid properties. The boundary segments have already been iden-
tified in Figure 1.1. Now, since air and fuel mix and react chemically, equations
for � = u1, u2, u3 (swirl velocity), T or h, and several mass fractions ωk must be
solved. The choice of ωk will of course depend on the reaction model postulated
by the analyst. Further, additional equations must be solved to capture effects
of turbulence via a turbulence model. This matter will become clear in later
chapters.

3. Select points (called nodes) within the domain so as to map the domain with a
grid. Construct control volumes around each node. In Figure 1.2, the domain of
interest is mapped by three types of grids: Cartesian, Curvilinear, and Unstruc-
tured. The hatched portions show the control volumes and the filled circles are
the nodes. Note that in the Cartesian grids, the control volumes near the slanted
wall are not rectangular as elsewhere. This type of difficulty is overcome in the
curvilinear grids where all control volumes are quadrilaterals and the grid lines
follow the contours of the domain boundary as required. The unstructured grid is
completely arbitrary. Although most control volumes are triangular, one can also
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8 INTRODUCTION
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UNSTRUCTURED

Figure 1.2. Different types of grids.

have polygons of any number of sides. This activity of specifying coordinates
of nodes and of specification of control volumes is called grid generation.

4. Integrate Equation 1.6 over a typical control volume so as to convert the partial
differential equation into an algebraic one. This is unlike the analytical solutions
in which the original PDEs are converted to ordinary ones. Thus, if there are
N V variables of interest and the number of nodes chosen is N P , one obtains
a set of N V × N P algebraic equations. The process of converting PDEs into
algebraic equations is called discretisation.

5. Devise a numerical method to solve the set of algebraic equations. This can be
done sequentially, so that N P equations are solved for each � in succession. Al-
ternatively, one may solve the entire set of N V × N P equations simultaneously.
The construction of the overall calculation sequence is called an algorithm.

6. Devise a computer program to implement the numerical method on a computer.
Different numerical methods require different amounts of computer storage and
different amounts of computer time to arrive at a solution. Aspects such as
economy in terms of number of arithmetic operations, convergence rate, and
stability of the numerical method are thus important.
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1.5 A NOTE ON NAVIER–STOKES EQUATIONS 9

7. “Interpret the solution:” The numerical solution results in values of each �

at each node. Such a � field provides the distribution of � over the domain.
The task now is to interpret the solution to retrieve quantities of engineering
interest such as the friction factor, a Nusselt number at the wall, or average
concentrations of CO, fuel, and NOx at the exit from a combustion chamber.
Sometimes the field may be curve-fitted to take the appearance of an analytical
solution. Similarly, the derived quantities may also be curve-fitted to take the
appearance of an experimentally derived correlation for ready use in further
design work.

8. “Display of results:” Since a numerical solution is obtained at discrete points,
the solution comprises numbers that can be printed in tabular forms. The in-
convenience of reading numbers can be circumvented by plotting results on a
graph or by displaying the � fields by means of contour or vector plots. Fortu-
nately, such graphic displays can now be made using computers. This activity
is called postprocessing of results. The commercial success of computer codes
often depends on the quality and flexibility of their postprocessors.

The primary focus of this book is to explain procedures for executing these
steps. Computer code developers and researchers adopt a variety of practices to
implement the procedures depending on their background, familiarity, and notions
of convenience. Clearly biases are involved.

In this book, emphasis is laid on physical principles. In fact, the attitude is one
of relearning fluid mechanics and heat and mass transfer by obtaining numerical
(as opposed to restrictive analytical) solutions. The book is not intended to provide
a survey of all numerical methods; rather, the objective is to introduce the reader
to a few specific methods and procedures that have been found to be robust in a
wide variety of situations of a specific class. The emphasis is on skill development,
skills required for problem formulation, computer code writing, and interpretation
of results.

1.5 A Note on Navier–Stokes Equations

The law of conservation of mass for the bulk fluid together with Newton’s second
law of motion constitutes the main laws governing fluid motion. As shown in
Appendix A, the equations of motion are written in differential form and, therefore,
assume existence of a fluid continuum. In this section, attention is drawn to an
often overlooked requirement that assumes considerable importance in the context
of CFD in which numerical solutions are obtained at discrete points rather than at
every point in space as in a continuum.

Attention is focussed primarily on the normal stress expressions given in
Appendix A (see Equations A.15). As presented in Schlichting [65], the normal
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10 INTRODUCTION

stresses are given by

σx = −p + σ ′
x = −p + q + τxx = −p + q + 2µ

∂u

∂x
, (1.7)

σy = −p + σ ′
y = −p + q + τyy = −p + q + 2µ

∂v

∂y
, (1.8)

σz = −p + σ ′
z = −p + q + τzz = −p + q + 2µ

∂w

∂z
. (1.9)

In these normal stress expressions, σ ′ is called the deviotoric stress and the
significance of quantity q in its definition requires elaboration. Schlichting [65]
and Warsi [86], for example, define a space-averaged pressure p as

p = −1

3
(σx + σy + σz). (1.10)

Now, an often overlooked requirement of the Stokes’s relations is that, in a
continuum, p must equal the point value of pressure p and the latter, in turn, must
equal the thermodynamic pressure pth. Thus,

p = p = pth = p − q − 2

3
µ � · V . (1.11)

In the context of this requirement, we now consider different flow cases to derive
the significance of q.

1. Case 1 (V = 0): In this hydrostatic case,

p = p − q. (1.12)

But in this case, p can only vary linearly with x, y, and z and, therefore, the point
value of p exactly equals its space-averaged value p in both continuum as well
as discretised space and hence q = 0 exactly.

2. Case 2 (µ = 0 or � · V = 0): Clearly when µ = 0 (inviscid flow) or � . V = 0
(constant-density incompressible flow) Equation 1.12 again holds. But, in this
case, since fluid motion is considered, p can vary arbitrarily with x, y, and z
and, therefore, p may not equal p in a discrete space. To understand this matter,
consider a case in which pressure varies arbitrarily in the x direction, whereas
its variation in y and z directions is constant or linear (as in a hydrostatic case).
Such a variation is shown in Figure 1.3. Now consider a point P. According to
Stokes’s requirement pP must equal pP in a continuum. However, in a discretised
space, the values of pressure are available at points E and W only, and if these
points are equidistant from P then pP = 0.5 (pW + pE). Now, this pP will not
equal pP, as seen from the figure, and therefore the requirement of the Stokes’s
relations is not met.

However, without violating the continuum requirement, we may set

q = λ1 (p − p), (1.13)

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521853265 - Introduction to Computational Fluid Dynamics
Anil W. Date
Excerpt
More information

http://www.cambridge.org/0521853265
http://www.cambridge.org
http://www.cambridge.org

