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Preface

Motivation

Leaves drifting in streams and blowing in the wind belong amongst our root
impressions of the natural world. Plumes discharging into streams and pump-
ing from smoke stacks symbolize our impact on that world. Thus it is baffling
when as students we discover that fluid dynamics is seemingly exclusively
investigated by measuring pressure at fixed points. The manometers in our
first fluids laboratories plainly measure total stagnation pressure; the mechan-
ical flow meters less obviously strike a dynamical balance between the torque
of the partial stagnation pressure on the turbine blades and the torque of fric-
tion in the turbine bearings. Our hands and faces do feel the rush of a stream
or the sweep of the wind, but these are brute sensations in comparison to the
incisive information processing at work when our eyes follows a flow marker.
This is a book about the role of kinematics in fluid dynamics. The

most revealing mathematical framework for developing kinematics is the
Lagrangian formulation, long ago discarded for being unwieldy compared to
the Eulerian formulation (Tokaty, 1971). Yet the discarded unwieldiness owes
precisely to the richness of the kinematical information. This book might
have been written any time in the twentieth century; the motivation now is the
emergence of Lagrangian observing technology. The emergence is of course
a reemergence; meteorologists have been routinely tracking weather balloons
with theodolites since the nineteenth century. However, visual tracking and
short transmitter life limit these data to being little more than local or Eule-
rian measurements of wind velocity and thermodynamic conditions. Radar,
acoustics, satellite relays and satellite-based navigation changed all that in
the late twentieth century. High-altitude balloons were tracked by satellites
for days during the First GARP Global Experiment (WMO, 1977). Floats

xiii
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xiv Preface

deep in the ocean are now tracked, effectively continuously, for months and
even years with onboard hydrophones and moored arrays of pingers.

Aims

The Lagrangian formulation of fluid dynamics is not likely to replace the Eule-
rian formulation. Such is especially the case in computational fluid dynamics,
although hybrid techniques are gaining ascendency. Rather, the Lagrangian
formulation complements the Eulerian. Hence this book is not intended as
a first course in fluid dynamics, and readers are assumed to have studied
Eulerian fluid dynamics at least at the level of an introductory course having
a scientific rather than engineering bent (Batchelor, 1973). Advanced calculus
(Apostol, 1957) and Cartesian tensors (Jeffreys, 1931) are of necessity used
extensively. The treatment of turbulence here assumes considerable prelimi-
nary familiarity with empirical, dimensional and statistical aspects (Lumley
and Panofsky, 1964; Tennekes and Lumley, 1972). The purpose of the treat-
ment developed here, indeed the purpose of the book as a whole, is to reveal
the unifying power of the Lagrangian formulation for one of the great prob-
lems in physics. The further purpose is the drawing of a broader perspective
for the analysis of the important new environmental data being collected with
the emerging Lagrangian technologies.

Contents

The development of Lagrangian fluid dynamics falls naturally into major parts.
Part I is concerned with the essence of the Lagrangian formulation, beginning
with the kinematics of particles and the introduction of a sufficiently powerful
notation for particle kinematics. The reader is advised against skipping lightly
through this seemingly prosaic material. It quantifies the concept of conserva-
tion of particle identity, which is perhaps the intrinsically Lagrangian concept.
The concept is captured by the labeling theorem of Kraichnan (1965), also
known as Lin’s identity (Lin, 1963). A striking corollary of this theorem is
an exact expression for a generalized Lagrangian drift in a laminar flow and
in each realization of a turbulent flow. Approximate drift formulae have long
been the subject of speculation: here is the actuality. While the first candidate
for a dependent variable in Lagrangian fluid dynamics is the particle path,
the more readily observed structures are streamlines in a wind tunnel or tow-
ing tank, and streaklines downstream of sources such as discharge pipes and
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Preface xv

smoke stacks. In anticipation of the complexity of such flow, the introduc-
tion of statistical quantification is essential. The rudiments are found here;
comprehensive treatments may be found elsewhere, for example Monin and
Yaglom (1971, 1975). A few generalities may be made for single particle
and particle pair statistics in homogeneous turbulence, that is, in turbulent
flow which is statistically uniform in space. The problem of relating Eulerian
and Lagrangian statistics is shown to be formally solved with functional or
‘path’ integrals.
The Lagrangian developments of dynamical principles into conservation

laws for mass, momentum and energy should be familiar since they are
found in most purportedly Eulerian texts. This familiarity underscores the
greater directness and clarity of the Lagrangian formulation of Newtonion
dynamics for fluids. The momentum equation in particular involves particle
accelerations; these are second-order partial derivatives of particle position
with respect to time elapsed since identification or release. Both Cauchy and
Weber realized (Lamb, 1932) that one integration in time is immediately
feasible. Pressure is supplanted by another scalar invariant, while Cauchy’s
vector invariant usurps vorticity. The Cauchy invariant reveals that neither
the particle path nor the particle velocity is the intrinsic dependent variable
in fluid dynamics; rather it is the Jacobi matrix or strain matrix of partial
derivatives of position with respect to initial position, or with respect to
whatever dependent variable identifies or labels the particle. Unlike particle
position, the Jacobi matrix is invariant with respect to Galilean transformations
of space. To split the hair, both the Eulerian equations of motion and the
original Lagrangian equations of motion are Galilean invariant; it is their
respective dependent variables of velocity and position which are not. Two
Russian hydrodynamicists have recently pointed out that there is a matrix
notation for the strain-based development (Yakubovich and Zenkovich, 2001).
While this compact notation appears to offer no advantages for numerical
computations, it has enabled its proponents to generalize the rotational wave
of Gerstner (Lamb, 1932) to a new class of vortices.
Lagrangian fluid dynamics can be expressed as a variational principle;

the invariance of the Lagrange density with respect to changes of particle
labels leads to the fundamentally important conservation laws for Ertel’s
potential vorticity. The laws are derived here with the care that is owed, to
the extent that the widely claimed naturality for the variational approach is
not so compelling.
Lagrangian variables, both dependent and independent, need coordinates.

All the coordinate options in the Eulerian formulation are available. The
detailed forms for the Lagrangian equations in various coordinates suggest
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xvi Preface

symmetries which are global in space: the familiar transformations represent-
ing rotations, which leave the equations invariant in form, are independent of
position but may depend upon time. Of particular interest to meteorologists
and oceanographers is the form of the Lagrangian equations in a uniformly
rotating reference frame.
Real fluids are characterized by the constitutive relations between stress

and strain. Newtonian fluids are defined by a linear relationship between the
local stress tensor and the local rate of strain tensor. The locality is essentially
Eulerian in nature. It is most simply expressed with Eulerian variables, and is
particularly awkward in Lagrangian variables. Yet, again, the appearance of
strain components, some of which may be rapidly growing, makes manifest
the tendency for intensification of viscous stresses by differential particle
motion. The locality of the Newtonian stress tensor is an expression of loss
of memory, while the strength of the Lagrangian formulation is memory
expressed as the retention of fluid particle identity. Which is the closer to
reality: loss of memory or memory retention? While the Newtonian constitu-
tive relation is of undisputed practical value, it is not so much a fundamental
physical law as a “phenomenological” law, to use the language of Prigogine
(1980). In other words, a fluid continuum is an abstraction, an unnatural arti-
fice. Real air and real water consist of assemblies of molecules, obeying the
fundamental laws of conservation of mass, momentum and energy. Viscous
stresses are caused by nonequilibrium distributions of molecular velocity,
as shown by the Chapman–Enskog deduction of the Navier–Stokes equa-
tions from Boltzmann’s equation (which deduction must surely qualify as the
“grand unified field theory” of the early twentieth century, and in fact of much
of the world which really matters to us; see Chapman and Cowling, 1970).
Alas, Boltzmann’s stosszahlansatz is an admission of loss of memory at the
molecular level (Thompson, 1988), so Lagrangian memory retention would
seem to be in vain. Yet a complete topological description of the motion
history of the macroscopic medium – the fluid continuum – demands a for-
mulation in which memory retention is intrinsic. The crisis was created not
by the development of the Lagrangian formulation, but initially by Boltzmann
having randomizing Liouville’s detailed microscopic description of molecular
motion, and subsequently by Chapman and Enskog having taken moments of
Boltzmann’s distributional description.
Having declared that the fully Lagrangian formulation of fluid dynamics

appears to offer no great numerical computational advantage, it would be
desirable to be able to offer a great range of analytical Lagrangian solutions.
Alas, there are only a few and these are also presented in Part II. Then again,
there are about as few analytical Eulerian solutions, and strictly Eulerian
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Preface xvii

numerical methods are being overtaken by semi-Lagrangian methods. It is
curious that some problems admit explicit solutions in one formulation but
not in the other. Irrotational flow past a circular cylinder admits an explicit
Eulerian solution, but the Lagrangian solution is not explicit. The latter is pre-
sented here simply to make the point. On the other hand, there is no explicit
Eulerian solution for the Gerstner wave. Nor are there for its generalizations,
the Ptolemaic vortices of Yakubovich and Zenkovich (2001). There are ana-
lytical Lagrangian solutions for planar flows of real fluids, typically near flat
plates. The Navier–Stokes equations for steady, incompressible viscous flow
in a flat-plate boundary layer were simplified by Prandtl (Schlichting, 1960);
as pointed out by Blasius (Schlichting, 1960), Prandtl’s equations admit a
single similarity variable, and the resulting nonlinear ordinary differential
equation may be solved numerically. It is shown here that the Lagrangian form
of Prandtl’s equations admit two similarity variables, one of which includes
time, leading to a pair of partial differential equations.
The Lagrangian formulation may be derived from the Eulerian by a trans-

formation of variables, but the transformation is flow dependent. The two
formulations are therefore sufficiently different from a mathematical point of
view that the general solvability of the Lagrangian must be addressed. Indeed,
the increasing interest in numerical Lagrangian fluid dynamics motivates the
question: is the computer really computing a flow?
It has long been recognized that the Lagrangian formulation is natural for

the analysis of conserved passive tracers. The formulation for diffusing tracers
is greatly complicated by the appearance of the Jacobi matrix, but assuming
the strain components are uniform in space permits an analytical solution.
The assumption turns out to be a valid approximation for turbulent diffusion
on a broad range of scales; the Lagragian solution developed throughout
Part III provides a unifying theoretical development of the many subranges
of homogeneous turbulence, and for diffusion of concentration gradients.
The results go beyond mere dimensional consistency or similarity, correctly
generating functional forms in subranges where alternative forms coexist,
some of which are dimensionally consistent but wrong. Relative dispersion is
shown to interact with spatially nonuniform plankton growth rates to destroy
spatial patchiness in the plankton concentration. Part III, which offers a
coherent and strictly Lagrangian presentation of turbulent diffusion ranging
from microscales in liquid mercury to planetary scales in the stratosphere, is
a completely reworked, reargued and augmented edition of an essay which
first appeared in Reviews of Geophysics (Bennett, 1987).
No coherent presentation of Lagrangian fluid dynamics appears to have

been offered prior to this book, but there are comprehensive accounts of
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xviii Preface

a number of hybrid formulations. Their being both hybrid formulations
and well described elsewhere, there is no need to cram them in here. The
Abridged Lagrangian History Direct Interaction Approximation (Kraichnan,
1965; Frisch, 1995) is a perturbative development of stationary, isotropic
turbulence. The formulation is indeed hybrid, having both Lagrangian and
Eulerian aspects. “ALHDIA” yields the correct self-similar inertial subrange,
while an analagous but strictly Eulerian formulation does not. ALHDIA also
yields the viscous subrange observed definitively in a tidal channel in British
Columbia (Grant, Stewart and Moilliet, 1962); as such the theory is one of
the great unsung victories of middle twentieth century physics. The hybdrid
Lagrangian formulation by Andrews and McIntyre (1978) permits Reynolds’
averaging without loss of operator form. Applied to the atmosphere, the
Lagrangian mean formulation facilitates the analysis of beams of internal
waves. As repeatedly mentioned here, semi-Lagrangian numerical methods
are pervading all of computational fluid dynamics; there are many introduc-
tory accounts (e.g., Durran, 1999). Finally come random flight models, which
take the form of stochastic differential equations. The models are traditionally
if mistakenly described as Lagrangian simulations. After all, they originated
in Einstein’s theory of the Brownian motion of minute but distinct particles
in water (Pais, 1982). Stochastic differential equations are, as far as scientific
content is concerned, no more than elegant algorithms for solving the associ-
ated diffusion equations, and the approximate closures that lead from the true
probabilistic Lagrangian kinematics to the diffusion equations are profoundly
suspect. Nevertheless, Rodean (1996) presents a comprehensive treatment of
Monte Carlo simulation of turbulent diffusion. Only a very brief outline is
included here, with application again to plankton dynamics.
The emerging Lagrangian observing technologies that so much motivate

this book are reviewed in Part IV. The brief data survey includes many
World Wide Web addresses for sites supporting these technologies, especially
oceanographic surface ‘drifters’ and subsurface ‘floats’.
It is shown in Chapter 7 of Part II that simple wave solutions of infinitesimal

amplitude may be developed in the Lagrangian framework, just as in the
Eulerian framework. Sums of the Eulerian wave solutions have routinely been
fitted to real data, but on scales that deny the assumptions upon which the
simple wave solutions are based such as an unbounded, uniform and constant
medium of propagation. Yet we continue to torture the real atmosphere and
real ocean on this Procrustean bed of simple wave expansions. The practice
should be deemphasized in favor of inverse modeling, that is, finding fields
that simultaneously give good fits to the finite amplitude equations of fluid
dynamics in a realistically shaped and realistically stratified ocean basin, and
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Preface xix

to real ocean data. Both fits should be sought within hypothesized levels of
error. By implication a dynamical model should include not just the equations
of motion, initial conditions and boundary conditions, but also quantitative
estimates of the errors in each of these component. Any failure to fit would
most likely indicate an overoptimistically small prior for the dynamical errors,
that is, something new would have been learned about ocean dynamics.
The Eulerian theory of oceanic and atmospheric inverse modeling may be
found elsewhere (Bennett, 1992, 2002; Wunsch, 1996). Emerging methods of
Lagrangian inverse modeling and Lagrangian data assimilation in general are
introduced in Part IV.
Again, dynamical investigations of fluid motion must move beyond approx-

imate analytical solutions and “forward” numerical integrations of the dynam-
ics, followed by simple comparisons with data. In the preferable inverse
calculations, the dynamical constraints need not be satisfied exactly, so the
conventional dynamical insights obtained by closely evaluating Eulerian term
balances do not apply in general. In any event, the term balance approach is
frought with difficulties on planetary scales, since many processes contribute
to the balances as a rule and their respective roles in the balances vary sub-
stantially over the ocean basin in question. The search for local dynamical
insights must be complemented with new and advanced skills at tracking
fluid particles, estimating the convergence and divergence of these tracks and
assessing the impact of such kinematic processes on the evolving pressure
gradients, that is, on the dynamics. Much experience is needed, in order that
insights may be drawn from the combination of inverse modeling and the
Lagrangian perspective. For instance, Eulerian analysis of deep float data
routinely involves unconstrained linear regression, for the estimation of the
Eulerian pressure from the float tracks. Yet pressure is not the dynamically
appropriate scalar field from the Lagrangian perspective. The ocean analyst
should instead estimate the scalar field of Cauchy and Weber, in a manner
consistent with Lagrangian kinematics and dynamics. If this book is effective,
the next generation of physical oceanographers will be able to do so.

Ulterior motive

It should be evident that considerable amounts of mathematical needlepoint
are required for the Lagrangian analysis of fluid dynamics. Today’s students
have a marvelous facility with computers, even though their manipulative
skills are less honed. Equally admirable are the students of an earlier gener-
ation who could knock off the Tripos questions in Whittaker and Watson’s
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xx Preface

Modern Analysis. The author falls between the two generations, yet wishes
to provide some opportunities and encouragement to today’s students so that
they might acquire some of the older masteries.

Corvallis, 2005.
.
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