
PART I

The Lagrangian Formulation
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Introduction

Kinematics, statistics and dynamics: these are the basic elements of fluid
dynamics. The Lagrangian formulation of the conservation laws for mass,
momentum and energy are familiar to fluid dynamicists, as it is the natural way
to extend Newtonian particle dynamics to fluids. Less familiar are: the con-
servation law for particle identity, which is effectively a definition of the
independent Lagrangian variables; the path integral relationship between the
statistics of random dependent Lagrangian variables and their Eulerian coun-
terparts; the first integrals of Cauchy and Weber for the inviscid Lagrangian
momentum equations, and the Cauchy vector invariant; the boundary condi-
tions that must be imposed on compressible flow at boundaries defined by
fluid particles (comoving boundaries), and the increasingly useful Lagrangian
conservation law for momentum when the particle position is expressed in
radial distance, longitude and latitude. The complexity of the divergence of
the viscous stress tensor expressed in Lagrangian variables is undeniable,
but the structure emphasizes the status of the Jacobi matrix as the Galilean
invariant state variable that characterizes the flow. The Cauchy invariant is
algebraically related to the Jacobi matrix and its Lagrangian time deriva-
tive; the conservation law for the Cauchy invariant in viscous flow is almost
elegant.
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1
Lagrangian kinematics

1.1 Conservation of particle identity

The essence of Lagrangian fluid dynamics is fluid particle identity acting as
an independent variable. The identifier or label may be the particle position at
some time, but could for example be a triple of the thermodyamic properties
of the particle at some time. Time after labeling is the other independent
variable. The fluid particle may not actually have been released into the
flow at the time of labeling, but merely labeled with position or with some
other properties at that time. Nevertheless, “time of release” will be used
interchangeably with “labeling time.” The subsequent position of the particle
is a dependent variable, even though it may coincide with the independently
chosen position of an Eulerian observer at the subsequent time. The Eulerian
observer also employs time, after some convenient initial instant, as the other
independent variable. Of course, a particle path can be calculated in the
Eulerian framework by integrating velocity on the path, with respect to time.
Indeed, the suppression or implicitness of this detailed path information is the
basis of the relative simplicity of the Eulerian formulation. On the other hand,
fluid velocity is readily calculated from the particle position in the Lagrangian
framework by the local operation of particle differentiation with respect to
time after labeling.
Conservation of particle identity is not an immediately compelling con-

sideration in the Eulerian framework, but is fundamental in the Lagrangian.
Bretherton (1970) correctly remarks that, since fluid particles having the
same mass, momentum and energy can be interchanged without affecting
the dynamics of the fluid, the particle identities are of no dynamical con-
sequence. Yet kinematic information is the basis for the conceptualization
of flow. Quantification of the kinematic principle of conservation of particle
identity yields a striking identity which resembles but is entirely distinct from
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6 Lagrangian kinematics

conservation laws for mechanical and thermodynamic properties. A first inte-
gral of the identity provides an exact formula for a generalized Stokes drift in
laminar flow, and in each realization of a turbulent flow. The suitability of,
for example, thermodynamic variables as particle identifiers does not require
that they be conserved; it is their instantaneous values at the labeling time
which are conserved for an individual particle.
The relationship between the Lagrangian and Eulerian formulations must

be established with great pedantry, in order to establish the soundness of
both. Consider, therefore, the fluid particle having the identifier or label
ai, �i=1�2�3�, such as its three-dimensional Cartesian coordinates, at some
time s. At some later time t a Lagrangian observer, that is, an observer who
moves with the particle, and who adopts a notation similar to that of Kraichnan
(1965), records the position of the particle as Xi�aj� s�t�. An Eulerian observer
located at the position xi at time t detects the particle if and only if

xi=Xi�aj� s�t�� (1.1)

See Figure 1.1.
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ui(aj , s|t)

(Xi(aj , s|t), t)

(Xi(aj , s|s), s) (aj , s)

Figure 1.1 A fluid particle is given the label aj at time s. Its position and
velocity at time t are, respectively, Xi�aj� s�t� and ui�aj� s�t�. The label aj is not
necessarily the labeling position Xi�aj� s�s�.
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1.1 Conservation of particle identity 7

The Lagrangian velocity ui�aj� s�t� is the particle velocity:

ui�aj� s�t�≡
�

�t
Xi�aj� s�t�� (1.2)

Note that the partial derivative with respect to t is taken at fixed values
for aj and s, that is, the derivative is the Lagrangian partial in time. In the
interest of notational simplicity, the same operator symbol ��/�t� will be used
subsequently for the Eulerian partial derivative in time, and the interpretation
of the symbol will be made clear in the accompanying text. Subscripts will
be used to distinguish thermodynamic partial derivatives of state variables, in
the rare instances where such derivatives occur.
The labeling theorem Let q be any quantity associated with a fluid parti-

cle, such as density �, temperature T , or a velocity component ui. The value
of q at time t is denoted q�aj� s�t�. Assume that the label aj is the particle
position at time s. Then, for any increment �s in the labeling time s (see
Figure 1.2),

q�Xi�aj� s�s+�s�� s+�s�t�=q�aj� s�t�� (1.3)

since the labels are on the same path and they refer to the same particle.
Expanding (1.3) and applying the definition (1.2) for the Lagrangian velocity
yields (Kraichnan, 1965)

�

�s
q�aj� s�t�+uk�aj� s�s�

�

�ak

q�aj� s�t�=0� (1.4)

Note that there is an implied summation over the repeated index k in (1.4).
The equation expresses that q is conserved along the characteristic direction

�ak

�s
=uk�aj� s�s�

in the �aj� s� labeling space-time. This is the law of conservation of particle
identity, or labeling theorem. �

For example, choosing the quantity q to be any component ui of the particle
velocity,

�

�s
ui�aj� s�t�+uk�aj� s�s�

�

�ak

ui�aj� s�t�=0� (1.5)

and hence

ui�aj� t�t�=ui�aj� s�t�−
∫ t

s
uk�aj� r�r�

�

�ak

ui�aj� r�t�dr� (1.6)
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8 Lagrangian kinematics

x3
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(Xi(aj, s|t),t)

(Xi(aj, s|s + ∆s), s + ∆s)

(ai, s)

q=q(aj, s|t)

Figure 1.2 If a fluid particle is labeled by its position ai at time s, then it
could equally well be labeled by its position ai+ui�aj� s	�s at time s+�s. In
particular, the value q for any state variable is the same for these two choices
of labels.

When the label ai is the particle position at the labeling time, as is the
case here, it is convenient to introduce a special notation for the Lagrangian
velocity at the labeling time:

ui�aj� r	≡ui�aj� r�r�� (1.7)

which is obviously the velocity recorded by an Eulerian observer at �aj� r�;
this assertion will be carefully confirmed later. Introducing the Eulerian nota-
tion (1.7) into (1.6) yields

ui�aj� s�t�−ui�aj� t	=
∫ t

s
uk�aj� r	

�

�ak

ui�aj� r�t�dr� (1.8)
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1.1 Conservation of particle identity 9

The relation (1.8) is an explicit expression for a generalized Stokes drift at
Xi�aj� s�t� since, in general,

Xi�aj� s�t� �=ai� (1.9)

and thus the drift is the difference of Lagrangian and Eulerian velocities at
different points on the one-particle path.
If the Eulerian velocity is solenoidal:

�

�xk
uk�xj� t	=0� (1.10)

then the drift is the spatial gradient of a mixed Eulerian–Lagrangian “predif-
fusivity:”

ui�aj� s�t�−ui�aj� t	=
�

�ak

Kik�aj� s�t�� (1.11)

where

Kik�aj� s�t�=
∫ t

s
uk�aj� r	ui�aj� r�t�dr� (1.12)

Notes

(i) The above formulae hold for a laminar flow, and for individual realiza-
tions of a turbulent flow; in particular the “prediffusivity” Kik has not
been averaged over an ensemble.

(ii) The product in the integrand involves total velocities, rather than depar-
tures from ensemble means.

(iii) The prediffusivity is asymmetric: Kik �=Kki.
(iv) Equation (1.12) is hardly surprising: if the velocities in the integrand are

known, then so is the drift (1.11). Nevertheless, it is instructive to assess
the data needed to evaluate Kij: a current meter (to use oceanographic
terminology) must be deployed at ai for s<r<t, and floats must be
released at ai at each time r in that interval: see Figure 1.3.

Exercise 1.1 Consider labeling by the particle position at the labeling time.
Show that for any particle property q,

q�ai� s�t�=q
[
Xi�aj� s�t�� t

]
� (1.13)

Hint: let q
[
Xi�aj� s�t�� t

]≡q
(
Xi�aj� s�t�� t�t

)=Q�ai� s�t�, say. Verify that
Q�ai� s�t�, like q�ai� s�t�, satisfies the labeling theorem (1.4), and note that
Q�aj� t�t�=q�ai� t�t�. This exercise establishes that the Lagrangian value of
q at time t is the Eulerian value at the particle position at that time. Thus
q�xi� t	 is aptly named the Eulerian value. �
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10 Lagrangian kinematics

ui[aj, t]

ui[aj, r]

ui[aj, s]

(ai, t)

(ai, r)

(ai, s)

ai

t

ui(aj, r|t) ui(aj, s|t)

Figure 1.3 Evaluation of the generalized drift (1.11) requires that a current
meter be deployed at position ai for s≤ r≤ t, and that labeled fluid particles be
released at ai throughout the same time interval.

Exercise 1.2 (Lin, 1963) The notation of the labeling theorem, like that the
path function Xi�aj� s�t�, can be reversed for further illumination. Let ai be
the label, at time s, of a particle observed at position xj at time t; that is,
ai=Ai�xj� t�s�. Show that the “total” or “material” derivative of the labeling
function Ai vanishes identically:

�

�t
Ai�xj� t�s�+uk�xj� t	

�

�xk
Ai�xj� t�s�=0� (1.14)

Note that, unlike Kraichnan’s equation (1.4), Lin’s equation (1.14) holds not
only for labeling by position at time s, but for arbitrary labeling at that time.

�

Exercise 1.3 Extend the labeling theorem to labels other than the particle
position at the labeling time, according to the following principle: for a
fluid particle at position xi at time t, the value of any particle property q

is independent of the time s at which the particle is assigned the arbitrary
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1.2 Streaklines, streamlines and steady flow 11

label aj . Verify that the original theorem (1.4) does obtain when the label is
in fact the particle position at the time of release. Alternatively, express any
label as a function of the release position and invoke the original labeling
theorem. Reconcile these extensions. Finally, given Lagrangian kinematics
labeled by aj at time s, relabel by bj at time r. �

Exercise 1.4 Consider a Lagrangian flow formulation having arbitrary labels
aj , that is, labels other than the particle position Xj�ak� s�t� at the release time
t= s. Express the Eulerian velocity in terms of the Lagrangian kinematics.
Establish the aptness of the construction of Eulerian fields from Lagrangian
fields having arbitrary labels. �

Exercise 1.5 Assume that a particle path of the form Xi=Xi�aj�t� is known
to be a solution of the Lagrangian equations of fluid dynamics, for some
label ai. Is Xi=Xi�aj�t−s� also a solution, for some time s? Show that the
labeling theorem may be used to extend the known solution to a family of
solutions of the form Xi=Xi�aj� s�t�� �

1.2 Streaklines, streamlines and steady flow

Fluid flow tends to be time dependent, and is most naturally made visible
with streaklines. These are neither particle paths nor streamlines, except for
steady flow in which all three are identical.

Exercise 1.6 A streakline is the locus, at one time t, of fluid particles released
at the position xi at previous times r in some interval s≤ r≤ t. Express streak-
lines with Lagrangian notation. A streamline is a path everywhere tangential
to the local fluid velocity, at one time t. Express streamlines with Lagrangian
notation. Illustrate planar particle paths, streakline and streamlines with a
single perspective sketch in the �x1� x2� t� space-time. �

Flow is defined to be “steady” if Lagrangian values are invariant under
time translation:

q�ai� s�t�=q�ai� s−T �t−T�� (1.15)

for some time shift T . The left-hand side of (1.15) can depend on s and t

only in the combination t−s. We may then define

q�ai�t−s�≡q�ai� s�t�� (1.16)
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12 Lagrangian kinematics

The “streamline” Xi�aj�t−s� is the sole particle path through Xi�aj� s�s�:
Xi�aj�t−s�=Xi�aj� s�t�� (1.17)

Exercise 1.7 Assuming that particles are labeled by their positions aj at
time s, show that on a streamline in steady flow,

ui�aj�t−s�=
(

�

�ak

Xi�aj�t−s�

)
uk�aj�0�� (1.18)

That is, the velocity on the streamline is the “strained initial value”. Hint: use
the labeling theorem. Is (1.18) a linear relationship? �

In general, the matrix of “Lagrangian strains”

Jij�ak� s�t�≡
�

�aj

Xi�ak� s�t� (1.19)

is the Jacobi matrix for the transformation aj →Xi. The Lagrangian formula-
tion is useful only so long as the determinant of this transformation, or Jacobi
determinant, does not vanish.
Recall that for labeling by release position, the Eulerian velocity is

ui�xj� t	≡ui�xj� t�t�� (1.20)

If the flow is steady, then

ui�xj� t�t�=ui�xj�0�� (1.21)

and the Eulerian velocity is independent of time:

ui�xj� t	=ui�xj	
 (1.22)

thus it suffices to find the Eulerian velocity at time t= s. The Eulerian and
Lagrangian velocities coincide at that time:

ui�xj	≡ui�xj�0�� (1.23)

Exercise 1.8 Show that in steady flow, particle paths are also streaklines
and streamlines. �

Now consider an ideally conserved quantity such as entropy �. That is,

��

�t
=0� (1.24)
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