Model Selection and Model Averaging

Given a data set, you can fit thousands of models at the push of a button, but how do you choose the best? With so many candidate models, overfitting is a real danger. Is the monkey who typed Hamlet actually a good writer?

Choosing a suitable model is central to all statistical work with data. Selecting the variables for use in a regression model is one important example. The past two decades have seen rapid advances both in our ability to fit models and in the theoretical understanding of model selection needed to harness this ability, yet this book is the first to provide a synthesis of research from this active field, and it contains much material previously difficult or impossible to find. In addition, it gives practical advice to the researcher confronted with conflicting results.

Model choice criteria are explained, discussed and compared, including Akaike's information criterion AIC, the Bayesian information criterion BIC and the focused information criterion FIC. Importantly, the uncertainties involved with model selection are addressed, with discussions of frequentist and Bayesian methods. Finally, model averaging schemes, which combine the strengths of several candidate models, are presented.

Worked examples on real data are complemented by derivations that provide deeper insight into the methodology. Exercises, both theoretical and data-based, guide the reader to familiarity with the methods. All data analyses are compatible with open-source R software, and data sets and R code are available from a companion website.

GERDA CLAESKENS is Professor in the OR & Business Statistics and Leuven Statistics Research Center at the Katholieke Universiteit Leuven, Belgium.

NILS LID HJORT is Professor of Mathematical Statistics in the Department of Mathematics at the University of Oslo, Norway.

CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS

Editorial Board R. Gill (Department of Mathematics, Utrecht University) B. D. Ripley (Department of Statistics, University of Oxford) S. Ross (Department of Industrial and Systems Engineering, University of Southern California) B. W. Silverman (St. Peter's College, Oxford) M. Stein (Department of Statistics, University of Chicago)

This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

Already published

- 1. Bootstrap Methods and Their Application, by A. C. Davison and D. V. Hinkley
- 2. Markov Chains, by J. Norris
- 3. Asymptotic Statistics, by A. W. van der Vaart
- 4. Wavelet Methods for Time Series Analysis, by Donald B. Percival and Andrew T. Walden
- 5. Bayesian Methods, by Thomas Leonard and John S. J. Hsu
- 6. Empirical Processes in M-Estimation, by Sara van de Geer
- 7. Numerical Methods of Statistics, by John F. Monahan
- 8. A User's Guide to Measure Theoretic Probability, by David Pollard
- 9. The Estimation and Tracking of Frequency, by B. G. Quinn and E. J. Hannan
- 10. Data Analysis and Graphics using R, by John Maindonald and John Braun
- 11. Statistical Models, by A. C. Davison
- 12. Semiparametric Regression, by D. Ruppert, M. P. Wand, R. J. Carroll
- 13. Exercises in Probability, by Loic Chaumont and Marc Yor
- 14. Statistical Analysis of Stochastic Processes in Time, by J. K. Lindsey
- 15. Measure Theory and Filtering, by Lakhdar Aggoun and Robert Elliott
- 16. Essentials of Statistical Inference, by G. A. Young and R. L. Smith
- 17. Elements of Distribution Theory, by Thomas A. Severini
- 18. Statistical Mechanics of Disordered Systems, by Anton Bovier
- 19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
- 20. Random Graph Dynamics, by Rick Durrett
- 21. Networks, by Peter Whittle
- 22. Saddlepoint Approximations with Applications, by Ronald W. Butler
- 23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison and N. Reid
- 24. Random Networks for Communication, by Massimo Franceschetti and Ronald Meester
- 25. Design of Comparative Experiments, by R. A. Bailey

Model Selection and Model Averaging

Gerda Claeskens K.U. Leuven

Nils Lid Hjort University of Oslo

© Cambridge University Press

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521852258

© G. Claeskens and N. L. Hjort 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library.

ISBN 978-0-521-85225-8 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Maarten and Hanne-Sara - G. C.

To Jens, Audun and Stefan – N. L. H.

Contents

	Prefa	ce	<i>page</i> xi
	A gui	de to notation	xiv
1	Mode	el selection: data examples and introduction	1
	1.1	Introduction	1
	1.2	Egyptian skull development	3
	1.3	Who wrote 'The Quiet Don'?	7
	1.4	Survival data on primary biliary cirrhosis	10
	1.5	Low birthweight data	13
	1.6	Football match prediction	15
	1.7	Speedskating	17
	1.8	Preview of the following chapters	19
	1.9	Notes on the literature	20
2	Akail	ke's information criterion	22
	2.1	Information criteria for balancing fit with complexity	22
	2.2	Maximum likelihood and the Kullback-Leibler distance	23
	2.3	AIC and the Kullback–Leibler distance	28
	2.4	Examples and illustrations	32
	2.5	Takeuchi's model-robust information criterion	43
	2.6	Corrected AIC for linear regression and autoregressive time series	44
	2.7	AIC, corrected AIC and bootstrap-AIC for generalised	
		linear models*	46
	2.8	Behaviour of AIC for moderately misspecified models*	49
	2.9	Cross-validation	51
	2.10	Outlier-robust methods	55
	2.11	Notes on the literature	64
		Exercises	66

viii		Contents	
3	The I	Bavesian information criterion	70
	3.1	Examples and illustrations of the BIC	70
	3.2	Derivation of the BIC	78
	3.3	Who wrote 'The Quiet Don'?	82
	3.4	The BIC and AIC for hazard regression models	85
	3.5	The deviance information criterion	90
	3.6	Minimum description length	94
	3.7	Notes on the literature	96
		Exercises	97
4	A cor	nparison of some selection methods	99
	4.1	Comparing selectors: consistency, efficiency and parsimony	99
	4.2	Prototype example: choosing between two normal models	102
	4.3	Strong consistency and the Hannan–Quinn criterion	106
	4.4	Mallows's C_p and its outlier-robust versions	107
	4.5	Efficiency of a criterion	108
	4.6	Efficient order selection in an autoregressive process and the FPE	110
	4.7	Efficient selection of regression variables	111
	4.8	Rates of convergence*	112
	4.9	Taking the best of both worlds?*	113
	4.10	Notes on the literature	114
		Exercises	115
5	Bigge	er is not always better	117
	5.1	Some concrete examples	117
	5.2	Large-sample framework for the problem	119
	5.3	A precise tolerance limit	124
	5.4	Tolerance regions around parametric models	126
	5.5	Computing tolerance thresholds and radii	128
	5.6	How the 5000-m time influences the 10,000-m time	130
	5.7	Large-sample calculus for AIC	137
	5.8	Notes on the literature	140
		Exercises	140
6	The f	ocussed information criterion	145
	6.1	Estimators and notation in submodels	145
	6.2	The focussed information criterion, FIC	146
	6.3	Limit distributions and mean squared errors in submodels	148
	6.4	A bias-modified FIC	150
	6.5	Calculation of the FIC	153
	6.6	Illustrations and applications	154
	6.7	Exact mean squared error calculations for linear regression*	172

Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
Frontmatter
Moreinformation

		Contents	ix
	6.8	The FIC for Cox proportional hazard regression models	174
	6.9	Average-FIC	179
	6.10	A Bayesian focussed information criterion*	183
	6.11	Notes on the literature	188
		Exercises	189
7	Freq	uentist and Bayesian model averaging	192
	7.1	Estimators-post-selection	192
	7.2	Smooth AIC, smooth BIC and smooth FIC weights	193
	7.3	Distribution of model average estimators	195
	7.4	What goes wrong when we ignore model selection?	199
	7.5	Better confidence intervals	206
	7.6	Shrinkage, ridge estimation and thresholding	211
	7.7	Bayesian model averaging	216
	7.8	A frequentist view of Bayesian model averaging*	220
	7.9	Bayesian model selection with canonical normal priors*	223
	7.10	Notes on the literature	224
		Exercises	225
8	Lack	-of-fit and goodness-of-fit tests	227
	8.1	The principle of order selection	227
	8.2	Asymptotic distribution of the order selection test	229
	8.3	The probability of overfitting*	232
	8.4	Score-based tests	236
	8.5	Two or more covariates	238
	8.6	Neyman's smooth tests and generalisations	240
	8.7	A comparison between AIC and the BIC for model testing*	242
	8.8	Goodness-of-fit monitoring processes for regression models*	243
	8.9	Notes on the literature	245
		Exercises	246
9	Mode	el selection and averaging schemes in action	248
	9.1	AIC and BIC selection for Egyptian skull development data	248
	9.2	Low birthweight data: FIC plots and FIC selection per stratum	252
	9.3	Survival data on PBC: FIC plots and FIC selection	256
	9.4	Speedskating data: averaging over covariance structure models	259
		Exercises	266
10	Furtl	ner topics	269
	10.1	Model selection in mixed models	269
	10.2	Boundary parameters	273
	10.3	Finite-sample corrections*	281

CAMBRIDGE

х	Contents	
	10.4 Model selection with missing data	282
	10.5 When p and q grow with n	284
	10.6 Notes on the literature	285
	Overview of data examples	287
	References	293
	Author index	306
	Subject index	310

Preface

Every statistician and data analyst has to make choices. The need arises especially when data have been collected and it is time to think about which model to use to describe and summarise the data. Another choice, often, is whether all measured variables are important enough to be included, for example, to make predictions. Can we make life simpler by only including a few of them, without making the prediction significantly worse?

In this book we present several methods to help make these choices easier. *Model selection* is a broad area and it reaches far beyond deciding on which variables to include in a regression model.

Two generations ago, setting up and analysing a single model was already hard work, and one rarely went to the trouble of analysing the same data via several alternative models. Thus 'model selection' was not much of an issue, apart from perhaps checking the model via goodness-of-fit tests. In the 1970s and later, proper model selection criteria were developed and actively used. With unprecedented versatility and convenience, long lists of candidate models, whether thought through in advance or not, can be fitted to a data set. But this creates problems too. With a multitude of models fitted, it is clear that methods are needed that somehow summarise model fits.

An important aspect that we should realise is that inference following model selection is, by its nature, the second step in a two-step strategy. Uncertainties involved in the first step must be taken into account when assessing distributions, confidence intervals, etc. That such themes have been largely underplayed in theoretical and practical statistics has been called 'the quiet scandal of statistics'. Realising that an analysis might have turned out differently, if preceded by data that with small modifications might have led to a different modelling route, triggers the set-up of *model averaging*. Model averaging can help to develop methods for better assessment and better construction of confidence intervals, p-values, etc. But it comprises more than that.

Each chapter ends with a brief 'Notes on the literature' section. These are not meant to contain full reviews of all existing and related literature. They rather provide some

xii

Preface

references which might then serve as a start for a fuller search. A preview of the contents of all chapters is provided in Section 1.8.

The methods used in this book are mostly based on likelihoods. To read this book it would be helpful to have at least knowledge of what a likelihood function is, and that the parameters maximising the likelihood are called maximum likelihood estimators. If properties (such as an asymptotic distribution of maximum likelihood estimators) are needed, we state the required results. We further assume that readers have had at least an applied regression course, and have some familiarity with basic matrix computations.

This book is intended for those interested in model selection and model averaging. The level of material should be accessible to master students with a background in regression modelling. Since we not only provide definitions and worked out examples, but also give some of the methodology behind model selection and model averaging, another audience for this book consists of researchers in statistically oriented fields who wish to understand better what they are doing when selecting a model. For some of the statements we provide a derivation or a proof. These can easily be skipped, but might be interesting for those wanting a deeper understanding. Some of the examples and sections are marked with a star. These contain material that might be skipped at a first reading.

This book is suitable for teaching. Exercises are provided at the end of each chapter. For many examples and methods we indicate how they can be applied using available software. For a master's level course, one could leave out most of the derivations and select the examples depending on the background of the students. Sections which can be skipped in such a course would be the large-sample analysis of Section 5.2, the average and Bayesian focussed information criteria of Sections 6.9 and 6.10, and the end of Chapter 7 (Sections 7.8, 7.9). Chapter 9 (certainly to be included) contains worked out practical examples.

All data sets used in this book, along with various computer programs (in R) for carrying out estimation and model selection via the methods we develop, are available at the following website: www.econ.kuleuven.be/gerda.claeskens/public/modelselection.

Model selection and averaging are unusually broad areas. This is witnessed by an enormous and still expanding literature. The book is not intended as an encyclopaedia on this topic. Not all interesting methods could be covered. More could be said about models with growing numbers of parameters, finite-sample corrections, time series and other models of dependence, connections to machine learning, bagging and boosting, etc., but these topics fell by the wayside as the other chapters grew.

Acknowledgements

The authors deeply appreciate the privileges afforded to them by the following university departments by creating possibilities for meeting and working together in environments conducive to research: School of Mathematical Sciences at the Australian

Preface

xiii

National University at Canberra; Department of Mathematics at the University of Oslo; Department of Statistics at Texas A&M University; Institute of Statistics at Université Catholique de Louvain; and ORSTAT and the Leuven Statistics Research Center at the Katholieke Universiteit Leuven. N. L. H. is also grateful to the Centre of Advanced Studies at the Norwegian Academy of Science and Letters for inviting him to take part in a one-year programme on biostatistical research problems, with implications also for the present book.

More than a word of thanks is also due to the following individuals, with whom we had fruitful occasions to discuss various aspects of model selection and model averaging: Raymond Carroll, Merlise Clyde, Anthony Davison, Randy Eubank, Arnoldo Frigessi, Alan Gelfand, Axel Gandy, Ingrid Glad, Peter Hall, Jeff Hart, Alex Koning, Ian McKeague, Axel Munk, Frank Samaniego, Willi Sauerbrei, Tore Schweder, Geir Storvik, and Odd Aalen.

We thank Diana Gillooly of Cambridge University Press for her advice and support.

The first author thanks her husband, Maarten Jansen, for continuing support and interest in this work, without which this book would not be here.

Gerda Claeskens and Nils Lid Hjort Leuven and Oslo

A guide to notation

This is a list of most of the notation used in this book. The page number refers either to the first appearance or to the place where the symbol is defined.

AFIC	average-weighted focussed information criterion	181
AIC	Akaike information criterion	28
AIC_c	corrected AIC	46
$\operatorname{aic}_n(m)$	AIC difference $AIC(m) - AIC(0)$	229
a.s.	abbreviation for 'almost surely'; the event	
	considered takes place with probability 1	
BFIC	Bayesian focussed information criterion	186
BIC	Bayesian information criterion	70
BIC*	alternative approximation in the spirit of BIC	80
BIC ^{exact}	the quantity that the BIC aims at approximating	79
cAIC	conditional AIC	271
$c(S), c(S \mid D)$	weight given to the submodel indexed by the set S	193
	when performing model average estimation	
D	limit version of D_n , with distribution $N_q(\delta, Q)$	148
D_n	equal to $\sqrt{n}(\widehat{\gamma} - \gamma_0)$	125
dd	deviance difference	91
DIC	deviance information criterion	91
E, E_g	expected value (with respect to the true	24
	distribution), sometimes explicitly indicated via a	
	subscript	
FIC	focussed information criterion	147
FIC*	bias-modified focussed information criterion	150
g(y)	true (but unknown) density function of the data	24
g	the link function in GLM	47
GLM	generalised linear model	46
G_S	matrix of dimension $q \times q$, related to J	146

	A guide to notation	XV
$h(\cdot)$	hazard rate	85
$H(\cdot)$	cumulative hazard rate	85
Ia	identity matrix of size $q \times q$	
$I(y, \theta), I(y x, \theta)$	second derivative of log-density with respect to θ	26
i.i.d.	abbreviation for 'independent and identically	
	distributed'	
infl	influence function	51
J	expected value of minus $I(Y, \theta_0)$, often partitioned	26, 127
	in four blocks	
J_S	submatrix of J of dimension $(p + S) \times (p + S)$.	146
J_n, K_n	finite-sample version of J and K	27, 153
\widehat{J}, \widehat{K}	J_n and K_n but with estimated parameters	27
Κ	variance of $u(Y, \theta_0)$	26
KL	Kullback–Leibler distance	24
$\mathcal{L}, \mathcal{L}_n$	likelihood function	24
ℓ, ℓ_n	log-likelihood function	24
mAIC	marginal AIC	270
MDL	minimum description length	94
mse	mean squared error	12, 149
n	sample size	23
$N(\xi, \sigma^2)$	normal distribution with mean ξ and standard	
	deviation σ	
$N_p(\xi, \Sigma)$	<i>p</i> -variate normal distribution with mean vector ξ	
	and variance matrix Σ	
narr	indicating the 'narrow model', the smallest model	120
	under consideration	
$O_P(z_n)$	of stochastic order z_n ; that $X_n = O_p(z_n)$ means that	
	X_n/z_n is bounded in probability	
$o_P(z_n)$	that $X_n = o_p(z_n)$ means that X_n/z_n converges to	
	zero in probability	
Р	probability	
р	most typically used symbol for the number of	
	parameters common to all models under	
	consideration, i.e. the number of parameters in the	
	narrow model	
pD	part of the penalty in the DIC	91
q	most typically used symbol for the number of	
	additional parameters, so that p is the number of	
	parameters in the narrow model and $p + q$ the	
	number of parameters in the wide model	

xvi	A guide to notation	
Q	the lower-right block of dimension $q \times q$ in the partitioned matrix J^{-1}	127
REML	restricted maximum likelihood, residual maximum likelihood	271
S	subset of $\{1, \ldots, q\}$, used to indicate a submodel	
se	standard error	
SSE	error sum of squares	35
TIC	Takeuchi's information criterion, model-robust AIC	43
Tr	trace of a matrix, i.e. the sum of its diagonal elements	
$u(y, \theta), u(y x, \theta)$	score function, first derivative of log-density with respect to θ	26
U(y)	derivative of log $f(y, \theta, \gamma_0)$ with respect to θ , evaluated at (θ_0, γ_0)	50, 122
V(y)	derivative of log $f(y, \theta_0, \gamma)$ with respect to γ , evaluated at (θ_0, γ_0)	50, 122
Var	variance, variance matrix (with respect to the true distribution)	
wide	indicating the 'wide' or full model, the largest	120
x, x_i	often used for 'protected' covariate, or vector of	
	covariates, with x_i covariate vector for individual no. i	
z, z_i	often used for 'open' additional covariates that may or may not be included in the finally selected model	
δ	vector of length q , indicating a certain distance	121
$ heta_0$	least false (best approximating) value of the parameter	25
Λ	limiting distribution of the weighted estimator	196
Λ_S	limiting distribution of $\sqrt{n}(\hat{\mu}_S - \mu_{true})$	148
μ	focus parameter, parameter of interest	120, 146
π_S	$ S \times q$ projection matrix that maps a vector v of	
	length q to v_S of length $ S $	
$ au_0$	standard deviation of the estimator in the smallest model	123
$\phi(u)$	the standard normal density	
$\phi(u,\sigma^2)$	the density of a normal random variable with mean zero and variance σ^2 , N(0, σ^2)	
$\Phi(u)$	the standard normal cumulative distribution function	

	A guide to notation	xvii
$\phi(x, \Sigma)$	the density of a multivariate normal $N_q(0, \Sigma)$ variable	
$\chi_q^2(\lambda)$	non-central χ^2 distribution with q degrees of freedom and non-centrality parameter λ , with mean $q + \lambda$ and variance $2q + 4\lambda$	126
ω	vector of length q appearing in the asymptotic distribution of estimators under local misspecification	123
$\stackrel{d}{\rightarrow}, \rightarrow_d$	convergence in distribution	
$\stackrel{p}{\rightarrow}, \rightarrow_p$	convergence in probability 'distributed according to'; so $Y_i \sim \text{Pois}(\xi_i)$ means that Y_i has a Poisson distribution with parameter ξ_i	
\doteq_d	$X_n \doteq_d X'_n$ indicates that their difference tends to zero in probability	