Author Index

Abelson, R. P., 327, 339
Adebiyi, B., 117
Agrawala, M., 276
Ainsworth, S., 72
Ainsworth, S. E., 237
Alberto, P., 188
Alexander, P. A., 357
Allende-Pellot, F., 359
Almstrum, V., 255
Anderson, C. M. B., 196
Anderson, D., 146
Anderson, D. R., 146
Anderson, J. R., 123
Anderson, K., 8
Anderson, R. B., 30
André, E., 32
Andrzijewski, Y., 72
Atkinson, C., 93
Atkinson, R. K., 45
Ayres, P., 12, 188
Baddeley, A., 33
Baek, Y. K., 304
Baggett, P., 160
Bailenson, J., 121
Bannert, M., 72
Barkley, R. A., 175
Barlow, S., 293
Barlow, K., 287
Bauer-Morrison, J., 208
Baylor, A. L., 127, 209
Beaver, J., 296
Benford, S., 296
Benett, C. K., 7
Bertus, E. L., 366
B´etrancourt, M., viii, 32, 49, 104, 123, 126, 141, 144, 145, 166, 169, 171, 208, 209, 210, 212, 216, 229, 231, 242, 263, 265, 289, 290, 291, 304, 348
Bhogal, R., 287, 293, 294
Bibby, P. A., 72, 237
Biggs, J., 174
Biswas, G., viii, 114, 116, 117, 120, 122, 125, 127, 166
Black, J. B., 10
Blair, K., viii, 114, 117
Blake, R., 330
Blaschke, K., 77
Bloom, J. W., 170
Blumberg, B., 287
B¨ockheler, J., 49, 72, 73, 88, 104, 117, 145
Bodemer, D., viii, 71, 75, 88, 89, 166, 170, 171, 172, 173, 174, 175, 176, 304
Boire, M., 41
Boucheix, J. M., viii, 208, 210, 211, 213, 221, 230, 363, 364
Boyle, R. A., 185
Bradshaw, J. M. (Ed.), 183
Brandon, L. J., 143
<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bransford, J. D.</td>
<td>120, 122, 129, 137, 366</td>
</tr>
<tr>
<td>Brennan, S. E.</td>
<td>121</td>
</tr>
<tr>
<td>Brewer, W. F.</td>
<td>321</td>
</tr>
<tr>
<td>Brna, P.</td>
<td>235, 243</td>
</tr>
<tr>
<td>Broadbent, D. E.</td>
<td>169</td>
</tr>
<tr>
<td>Brown, A. L.</td>
<td>122, 127, 199, 366</td>
</tr>
<tr>
<td>Bruchmüller, K.</td>
<td>89</td>
</tr>
<tr>
<td>Bruner, J. S.</td>
<td>287</td>
</tr>
<tr>
<td>Bruning, R.</td>
<td>188</td>
</tr>
<tr>
<td>Byrne, M. D.</td>
<td>242</td>
</tr>
<tr>
<td>Campbell, J.</td>
<td>44, 208, 210</td>
</tr>
<tr>
<td>Campione, J. L.</td>
<td>199</td>
</tr>
<tr>
<td>Caramazza, A.</td>
<td>8</td>
</tr>
<tr>
<td>Carney, R. N.</td>
<td>143</td>
</tr>
<tr>
<td>Carpenter, P. A.</td>
<td>6, 330</td>
</tr>
<tr>
<td>Cassell, J.</td>
<td>117, 121, 359</td>
</tr>
<tr>
<td>Cate, C., 15</td>
<td></td>
</tr>
<tr>
<td>Caterino, L. C.</td>
<td>143</td>
</tr>
<tr>
<td>Catrambone, R. C.</td>
<td>242</td>
</tr>
<tr>
<td>Ceci, S. J.</td>
<td>177</td>
</tr>
<tr>
<td>Chan, T.</td>
<td>123, 293</td>
</tr>
<tr>
<td>Chandler, P.</td>
<td>12, 33, 42, 73, 88, 93, 94, 100, 104, 105, 147, 159, 188, 210, 211, 317, 342</td>
</tr>
<tr>
<td>Chassot, A., viii</td>
<td>141, 166, 169, 171</td>
</tr>
<tr>
<td>Chernicoff, S.</td>
<td>274</td>
</tr>
<tr>
<td>Chi, M. T. H., 4, 5, 9, 10, 11, 75, 127, 362, 366</td>
<td></td>
</tr>
<tr>
<td>Chiesi, H., 10</td>
<td></td>
</tr>
<tr>
<td>Chiu, M., 4, 362, 366</td>
<td></td>
</tr>
<tr>
<td>Chon, C., 293</td>
<td></td>
</tr>
<tr>
<td>Chronbach, L., 7</td>
<td></td>
</tr>
<tr>
<td>Chun, D. M.</td>
<td>188</td>
</tr>
<tr>
<td>Clarebout, G., 183</td>
<td></td>
</tr>
<tr>
<td>Clark, H. H., 344</td>
<td></td>
</tr>
<tr>
<td>Clark, R. C., 73, 88</td>
<td></td>
</tr>
<tr>
<td>Clark, R. E., 192, 203</td>
<td></td>
</tr>
<tr>
<td>Cocking, R. R.</td>
<td>366</td>
</tr>
<tr>
<td>Cohen, P. A., 122</td>
<td></td>
</tr>
<tr>
<td>Converse, S. A., 287, 293, 294</td>
<td></td>
</tr>
<tr>
<td>Corke, G., 296, 297</td>
<td></td>
</tr>
<tr>
<td>Coté, N., 362, 366</td>
<td></td>
</tr>
<tr>
<td>Coulson, R. L.</td>
<td>367</td>
</tr>
<tr>
<td>Cox, R., 235, 243</td>
<td></td>
</tr>
<tr>
<td>Craig, S. D., 39, 43, 183, 190</td>
<td></td>
</tr>
<tr>
<td>Craik, F. I. M., 169, 196</td>
<td></td>
</tr>
<tr>
<td>Cronbach, L. J., 167, 168</td>
<td></td>
</tr>
<tr>
<td>Cunningham, K. L.</td>
<td>32</td>
</tr>
<tr>
<td>Cypher, A.</td>
<td>117</td>
</tr>
<tr>
<td>Daniele, M.-P.</td>
<td>276</td>
</tr>
<tr>
<td>Dann, W.</td>
<td>255</td>
</tr>
<tr>
<td>Das, J. P.</td>
<td>168</td>
</tr>
<tr>
<td>Davis, J., viii</td>
<td>114, 116, 125, 166</td>
</tr>
<tr>
<td>de Jong, T., 72, 188</td>
<td></td>
</tr>
<tr>
<td>de Leeuw, N., 4, 362, 366</td>
<td></td>
</tr>
<tr>
<td>Denis, M., 143, 267, 270</td>
<td></td>
</tr>
<tr>
<td>Derman, D.</td>
<td>13</td>
</tr>
<tr>
<td>Deutsch, M., 120</td>
<td></td>
</tr>
<tr>
<td>Dewey, J., 186</td>
<td></td>
</tr>
<tr>
<td>Dillenbourg, P., 123, 231</td>
<td></td>
</tr>
<tr>
<td>Doctorow, M., 185</td>
<td></td>
</tr>
<tr>
<td>Douglas, S. A., 238, 255</td>
<td></td>
</tr>
<tr>
<td>Dow, G., 42, 43</td>
<td></td>
</tr>
<tr>
<td>Drascic, D., 296</td>
<td></td>
</tr>
<tr>
<td>Driscoll, D. M., 39, 43, 183, 190</td>
<td></td>
</tr>
<tr>
<td>Duffield, J. A., 357</td>
<td></td>
</tr>
<tr>
<td>Dunlap, J. C., 357</td>
<td></td>
</tr>
<tr>
<td>Durán, R., 188</td>
<td></td>
</tr>
<tr>
<td>Durgin, F., 268</td>
<td></td>
</tr>
<tr>
<td>Dwyer, F. M., 339, 351</td>
<td></td>
</tr>
<tr>
<td>Edwards, G., 270</td>
<td></td>
</tr>
<tr>
<td>Effken, J. A., 183</td>
<td></td>
</tr>
<tr>
<td>Eisenstadt, M., 241</td>
<td></td>
</tr>
<tr>
<td>Ekstrom, R. B., 13</td>
<td></td>
</tr>
<tr>
<td>Elkerton, J., 52</td>
<td></td>
</tr>
<tr>
<td>Elliot, A. J., 200</td>
<td></td>
</tr>
<tr>
<td>Engle, R. W., 10, 168, 175, 176</td>
<td></td>
</tr>
<tr>
<td>Entwistle, N., 174</td>
<td></td>
</tr>
<tr>
<td>Erickson, T., 191</td>
<td></td>
</tr>
<tr>
<td>Ericsson, K. A., 75, 169</td>
<td></td>
</tr>
<tr>
<td>Facer, K., 296</td>
<td></td>
</tr>
<tr>
<td>Fajen, B., 183</td>
<td></td>
</tr>
<tr>
<td>Faltings, B., 96</td>
<td></td>
</tr>
<tr>
<td>Faraday, P., 3, 11, 51</td>
<td></td>
</tr>
<tr>
<td>Farmer, L., 44</td>
<td></td>
</tr>
<tr>
<td>Farrar, M. J., 122</td>
<td></td>
</tr>
<tr>
<td>Felton, P. J., 367</td>
<td></td>
</tr>
<tr>
<td>Fennell, S., 44</td>
<td></td>
</tr>
<tr>
<td>Ferguson, E. S., 3</td>
<td></td>
</tr>
<tr>
<td>Ferguson, G. A., 167, 168</td>
<td></td>
</tr>
</tbody>
</table>
Author Index

Holyoak, K. J., 265
Hron, A., 74, 86, 87
Hübscher-Younger, T., viii, 235, 243, 360, 366
Huck, J., 216
Hull, R., 296
Hummel, J. E., 265
Hundhausen, C., 238, 255
Isaacs, E., 186
Isaak, M. I., 8, 9, 17
Iyer, G., 266–267
Jackson, J., 38
Jacobson, M. J., 367
Janis, I., 241
Jeffres, J. A., 266
Jeong, H., 127
Johnson, M., 236
Johnson, O., 287
Johnson, W. L., 117, 183, 293, 359
Johnson-Laird, P. N., 143, 169
Joiner, R., 296
Jonassen, D. H., 186, 202
Jonassen, D. H. (Ed.), 73
Jones, S., 291, 357
Just, M. A., 4, 6, 7, 8, 9, 11, 17, 22, 213, 216, 330
Kahler, S. E., 287, 293, 294
Kail, H., 145–146
Kaiser, M. K., 8, 149, 145, 230, 266, 268, 291
Kalyuga, S., 12, 43, 105, 147, 159, 188
Kane, M. J., 168, 175, 176
Kaufman, L., 268
Keoh, C., 359
Keil, F., 11
Kennedy, A., 330
Kerwin, M. L., 229
Kinchin, I. M., 124
King, A., 197
Kini, A. S., 145
Kintsch, E., 176, 362, 364
Kintsch, W., 5, 10, 169, 176, 177, 178, 339, 362, 364
Kirby, J. R., ix, 97, 165, 168, 171, 172, 177, 358
Kirk, D., 296
Kline, C., 287
Koedinger, K. R., 119, 123
Kohonen, A., 255
Koleva, B., 296
Kopp, S., 117
Kosslyn, S., 330, 352
Kozhevnikov, M., 172
Krapp, A. (Ed.), 186, 192
Kreuz, R., 183, 359
Kriz, S., viii, 3, 15, 20, 25, 26, 166, 168, 169, 170, 173, 178, 212
Kuhn, D., 131, 185
Kulhavy, R. W., 143
Kulik, C.-L. C., 122
Kulik, J. A., 122
Kuse, A. R., 276
Lakoff, G., 236
Lanca, M., 97
Lang, D., 267
Larkin, J. H., 143, 161
LaVancher, C., 4, 362, 366
Layne, B. H., 304
Lee, P., 267, 269, 271, 276
Leelawong, K., viii, 114, 116, 117, 125, 127, 166
Lefavrais, P., 221
Lehman, J., 127
Lentz, R., 143
Leopold, C., 73
Lester, J. C., 43, 117, 120, 183, 184, 185, 186, 190, 191, 192, 193, 194, 195, 197, 198, 201, 202, 287, 293, 294, 359
Leutner, D., 73, 188
Levie, W. H., 143
Levin, J. R., 143
Liberman, A. M., 196, 201
Lickorish, A., 304
Lin, C., 293
Lin, X. D., 127
Linton, F., 267
Lockhart, R. S., 169
Lohman, D. F., 6
Lonn, S., 38, 39, 192
Loss, R., 73, 88
Low, R., 196–197, 201
Author Index

Lowe, R., 32
Lozano, S. C., ix, 279
Macaulay, D., 24
MacKenzie, R., ix, 270
MacLeod, C. M., 170
MacLeod, S., 359
Maes, P., 192
Magliano, J., 127
Maheshwari, P., 9, 210, 211
Malmi, L., 255
Marey, E. J., 320
Mark, M. A., 198
Markman, A. B., 88
Marks, C., 185
Marron, M. A., 178
Marshall, P., 294
Martin, B., 267, 268, 279
Martin, V., 197
Marx, R. W., 185
Massaro, D. W., 190, 192
Mathias, A., 42–43
Mathon, S., 119
Mautoné, P., 39, 42–43, 45, 216
Mayer, S., 42, 43, 208, 210
McCloskey, M., 8
McClosky, S., 270, 282, 310
McCune, V., 174
McGee, M. G., 6
McGregor, H. A., 200
Mchally, M., 255
McNamara, D. S., 176, 362, 364
McNamara, T., 313
Menke, D., 197
Merrill, M. M., 45
Milgram, P., 296
Milgram, S., 241
Milroy, R., 304
Mitrovic, A., 190, 191
Miyake, A., 6, 10, 221
Miyake, N., 7, 19
Moon, Y., 191
Moore, P. J., 171, 172
Morris, A., 183
Morrison, J. B., ix, 3, 104, 123, 126, 144, 263, 266, 289, 290, 291, 348
Moss, A., 296, 297
Motoda, H., 5
Moundridou, M., 191
Mousavi, S., 196–197, 201
Mulholland, P., 241
Muller, H., 296, 297
Müller, J., 189, 191
Muybridge, E., 266
Naglieri, J., 168
Nakamura, G. V., 321
Naps, T., 255
Nass C., 44, 136, 191
Nation, K., 178
Neale, H., 298
Neisser, U., 329, 339
Neudert, S., viii, 71, 166
Nielsen, P., 96
Niemi, C., 43
Niemirepo, T., 293
Norman, D. A., 192, 196
Norman, G. R., 9, 210, 211, 212
Novak, J. D., 124
O’Day, T., 359
O’Malley, C., 296, 297
Author Index

O’Neil, H. F., 43
Oberlander, J., 71
Oestermeier, U., 5
Ohlsson, S., 321
Olin, K., 43
Paas, F., 35, 36, 45, 72, 88, 93, 94, 111, 192, 305, 317, 338
Paivio, A., 33, 143, 169, 189, 197
Palincsar, A. S., 122, 127
Palmer, S. E., 4–5, 52
Pani, J. R., 266
Park, O., 288, 289
Pea, R. D., 131
Peck, K. L., 186, 202
Pedhazur, E. J., 168
Pedone, R., 265
Peek, J., 143
Penney, C. G., 201
Perfetti, C. A., 178
Person, N., 127
Phan, D., 276
Phelps, T., 296, 297
Phillips, T. L., 291
Picard, E., 74, 86, 87
Pintrich, P. R., 174, 185
Plass, J. L., 188
Ploetzner, R., viii, 32, 71, 73, 75, 88, 89, 166, 170, 171, 172, 173, 174, 175, 176, 304
Pollatsek, A., 199
Pramono, H., 329, 340
Preece, J., 292
Pressley, M., 197
Pretz, J. E. (Ed.), 168
Price, S., 288, 290, 291, 296, 297, 298
Proffitt, D. R., 8, 49, 145, 230, 266, 268, 291
Prothero, W., 42–43
Quilici, J., 23, 145, 146
Radach, R., 330
Radinsky, J., 363
Randell, C., 296, 297
Rasch, T., viii, 92, 96, 100, 166, 168, 173, 174, 176, 177, 317
 Réalini, N., 212, 229
Rebetz, C., 231
Reeves, B., 44, 136, 191
Reid, J., 296
Renkl, A., 35, 36, 45, 122
Renninger, K. A., 186, 192
Resnick, M., 287
Rickel, J. W., 117, 183, 293, 359
Riding, R. J., 144
Rieber, L. P., 144, 145, 146, 160, 188, 288
Riemp, R., 67, 210, 211, 213, 214, 229, 230, 304
Robinson, H. A., 73
Rodger, S., 255
Roessling, G., 255
Ronning, R. R., 288
Rosi, E., 323
Rosenthal, R., 121
Rozenblit, L., 192
Ryou, J., 287
Ryu, J., 295, 359
Salomon, G., 87, 92, 100, 104, 309
Salthouse, T. A., 6, 7
Sangin, M., 231
Saul, E. U., 362, 366
Schank, R. C., 327, 339
Schmelkin, L. P., 168
Schnadelbach, B., 296
Schneider, E., 210, 213
Schofield, N. J., 171, 172
Schraw, G. J., 188
Schwan, S., 67, 210, 211, 213, 214, 229, 230, 304
Schwartz, D. L., viii, 10, 114, 116, 117, 118, 120, 121, 122, 125, 127, 129, 137, 166, 172, 177
Schwartz, K. T., 266
Sears, D., 118
Author Index

Sekuler, R., 330
Self, J., 123
Shah, P., 6, 7, 216, 221
Sharp, H., 292
Shaw, E., 183
Shaw, R., 183
Shepard, R. N., 266
Shiffrar, M. M., 266
Shiffrin, R. M., 93
Shimoda, T. A., 127
Shippey, G. T., 266
Shneiderman, B., 93
Shipper, G. T., 192
Sharp, H., 292
Shah, P., 268
Simmel, M., 268
Simon, H. A., 75, 126, 143, 161, 185, 200
Sims, V. K., 6, 8, 9, 41, 67, 96, 265, 281, 330
Singer, M., 5, 363
Smith, D. C., 117
Smith, H., 296, 297
Smith, R., 146, 160
Smith, W., 270, 282
Snow, R. E., 7
Sobko, K., 45
Soininen, A., 230
Soller, A., 293
Songer, N. B., 176, 362, 364
Spada, H., 88, 304
Spero, L., 9, 210, 211
Sperotable, L., 210, 212
Spilich, G., 10
Spires, H. A., 43, 120, 185, 192, 193, 194, 195, 201, 202
Spiro, R. J., 367
Spoehr, K. T., 18
Spohrer, J., 117
Sproull, L., 192
Stanton, D., 296, 297, 298
Stanton-Fraser, D., 296
Stasko, J. T., 238, 242, 255
Steiner, I., 121
Steinhoff, K., 216
Stelling, G., 117, 184, 190, 359
Stenning, K., 71, 290
Sternberg, R. J., 168
Steuer, J. S., 191
Stolte, C., 276
Stone, B. A., 117, 184, 190, 287, 293, 294, 359
Stroynowski, J., 67
Stryer, L., 274
Subramani, R., 192
Suraweera, P., 190, 191
Sutcliffe, A., 3, 11, 51
Suwa, M., 5
Sweller, J., 32, 33, 35, 36, 45, 72, 73, 88, 93, 94, 100, 105, 111, 147, 159, 168, 188, 196–197, 198, 201, 202, 305, 317, 333, 334, 338, 344
Tabbers, H., 192
TAG-V, 120, 122, 127
Tang, J. C., 186
Tasker, R., 268
Tassini, S., 210, 212
Taylor, H. A., 312
Taylor, I., 296, 297
Tepper, P., 117
Thomas, E. L., 73
Thomas, F., 287
Thompson, S. V., 144
Thurman, R. A., 43
Thurstone L. L., 221
Thustone T. G., 221
Tobias, S., 30
Tomasello, M., 122
Towns, S. G., 183, 186, 190, 191, 197, 198, 202
Trabasso, T., 5
Trafton, G., 267
Trebys, D., 73, 88
Tromp, R. A., 188
Tseng, H., 191
Tufte, E. R., 312, 351
Tuovinen, J. E., 188, 192, 198, 202
Ullman, S., 329
Uretski, J. A. R., 127
Vaez, H., 32
Vagge, S. 99A, 77.160A
Valazquez-Iturbide, J. A., 255
Van Gerven, P., 192
van Joolingen, W. R., 72, 188
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Merriënboer, J. G.</td>
<td>72, 88, 93, 94, 111, 168, 305, 317, 338</td>
</tr>
<tr>
<td>Van Mulken, S.</td>
<td>189, 191</td>
</tr>
<tr>
<td>Vandenberg, S. G.</td>
<td>276</td>
</tr>
<tr>
<td>Vandendorpe, Ch.</td>
<td>148, 160</td>
</tr>
<tr>
<td>Vaucelle, C.</td>
<td>359</td>
</tr>
<tr>
<td>Virvou, M.</td>
<td>191</td>
</tr>
<tr>
<td>Viswanath, K.</td>
<td>116, 117, 125</td>
</tr>
<tr>
<td>Volk, T.</td>
<td>170</td>
</tr>
<tr>
<td>Vosniadou, S.</td>
<td>10</td>
</tr>
<tr>
<td>Voss, J.</td>
<td>10</td>
</tr>
<tr>
<td>Vye, N.</td>
<td>116, 125, 127</td>
</tr>
<tr>
<td>Vygotsky, L. S.</td>
<td>93, 107, 369</td>
</tr>
<tr>
<td>Wächter, M.</td>
<td>72, 73, 88</td>
</tr>
<tr>
<td>Walker, J. H.</td>
<td>174, 192</td>
</tr>
<tr>
<td>Waller, D.</td>
<td>6, 210, 215</td>
</tr>
<tr>
<td>Weal, M.</td>
<td>296</td>
</tr>
<tr>
<td>Weil, A.</td>
<td>199</td>
</tr>
<tr>
<td>Wertheimer, M.</td>
<td>321</td>
</tr>
<tr>
<td>Wetzell, K.</td>
<td>42–43</td>
</tr>
<tr>
<td>Whelan, S.</td>
<td>49, 145, 230, 266, 268, 291</td>
</tr>
<tr>
<td>White, B.</td>
<td>127, 312</td>
</tr>
<tr>
<td>White, C.</td>
<td>192</td>
</tr>
<tr>
<td>Wiemer-Hastings, K.</td>
<td>183, 359</td>
</tr>
<tr>
<td>Wiemer-Hastings, P.</td>
<td>183, 359</td>
</tr>
<tr>
<td>Wilson, B. G.</td>
<td>186, 202</td>
</tr>
<tr>
<td>Wilson, M.</td>
<td>192</td>
</tr>
<tr>
<td>Winn, W. D.</td>
<td>52</td>
</tr>
<tr>
<td>Wittrock, M. C.</td>
<td>33, 185</td>
</tr>
<tr>
<td>Woloshyn, V.</td>
<td>197</td>
</tr>
<tr>
<td>Wood, B.</td>
<td>183</td>
</tr>
<tr>
<td>Wood, D. J.</td>
<td>72, 237</td>
</tr>
<tr>
<td>Wood, E.</td>
<td>197</td>
</tr>
<tr>
<td>Wright, P.</td>
<td>304</td>
</tr>
<tr>
<td>Yamauchi, T.</td>
<td>127</td>
</tr>
<tr>
<td>Yee, N.</td>
<td>121</td>
</tr>
<tr>
<td>Yeo, S.</td>
<td>73, 88</td>
</tr>
<tr>
<td>Zacks, J.</td>
<td>266–267, 269, 271, 323</td>
</tr>
<tr>
<td>Zadnik, M.</td>
<td>73, 88</td>
</tr>
<tr>
<td>Zettlemoyer, L. S.</td>
<td>183</td>
</tr>
<tr>
<td>Zhang, J.</td>
<td>147</td>
</tr>
</tbody>
</table>
Subject Index

Adele described, 183
Agent thought structure, adoption of, 124–125
Alberti, L.B., 307
Animated pedagogical agents (APAs). See also Informal instruction, animations in botany multimedia game scenario, 184–185

cognitive processing enhancement by, 197, 201
design, principles of, 202–203
experiments
agent vs. non-agent environment, 192–194, 201
interactivity & guidance hypotheses, 199–200, 201–202, 359
visual vs. auditory agent cues, 194–197
learning enhancement by, 188–190, 198
learning impedance by, 191–192, 201
overview, 183, 359–360
roles of, 183–184, 186–188

Animations
appeal of, 263
applications of, 264, 271, 288, 300–301
benefits of, 5, 92, 125–126, 143, 235–236, 286
as compensation for lack of spatial ability, 7
comprehension of (See Comprehension; Learning)
as content representations, 360–361
defined, 141, 264–265, 304
directive function of, 315–316
feature usage, verification of, 18–19 (See also Interrogation strategies)
history of, 286–287, 307–308
instructional uses of, 142–148
and judgment of mechanical events, 8, 266
limitations of, 33, 263–264
narrative structure in, 278
online processing of, 146–148
production cost, justification of, 26
realism in, 308
representational function of, 315–316
senses of, 359
spatial/temporal structures in, 317–318
student-authored (See Expository representations, student-authored)
types
effectiveness of, 100–105, 111–112
overview, 309
versatility of, 114
vs. static diagrams, 304–305

Anthropomorphism, 191
Arrows, 11, 18, 265, 270, 271–275, 281, 312
Assembly instructions study, 276–279, 281
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
</tr>
</tbody>
</table>
Subject Index 381

Subject Index

Comprehension. See also Learning (cont.)
 text
 domain knowledge in, 5, 22
 flushing cistern experiments, 21–24
 high-spatial ability learners, 22
 overview, 21–24, 26
 top-down model of, 4, 50
 and visualization, 11, 142–143
 Computer algorithm learning study
 conventional simulations, similarity to
 and student rating, 248–249, 253, 254, 256–257
 learning progression in, 254–255
 media use and student rating, 246, 248, 252–254, 255–256
 overview, 235–238, 255
 representations
 evaluation of, study II, 240, 244–247, 249
 evaluation of, study III, 249–255
 student use of, 238–242, 256
 Computer tutors, 123
 Concept formation theory, 236
 Concept mapping, 124, 129
 Concurrency issues in processing, 51, 65–66
 Congruence Principle, 265–266
 Consequences, portrayal of, 271, 273
 Content, static vs. dynamic, 309–315
 Continuous simulation pictures
 circumnavigation study, 103
 facilitating function of, 101, 109–111
 in time differences display, 101, 102
 Cosmo described, 183
 Cost-efficient principle, 202–203
 Curtate cycloid illusion, 9
 Cycles/processes, portrayal of, 271, 273
 Decomposition
 of behaviors, 327
 of complex objects, 312–314
 of dynamic systems, 50–51, 66
 temporal changes, 323
 Deduction learning studies, 130–133, 137
 Degree of control and learning, 213–214, 219, 226
 Demonstrations study, 278–279, 281
 Depth aspect of mental representation in
cognitive processing, 169, 170, 174
 Depth-First Search algorithm, 251
 Design of animations
 Animated Pedagogical Agents, 202–203
 approaches to, 365–366
 attentional problems, resolving, 11–12
 cognitive load theory and, 88
 cognitive principles of (See Cognitive
design principles)
 communication in, 12
 and comprehension, 9, 13, 50–51
 and extraneous overload, 36–37, 40–41
 for formal instruction, 291–292
 history of, 287
 for informal instruction, 295
 interactivity, benefits of, 123–124, 292
 learner centered approach to, 32
 limitations of, vii
 minimalism in, 351–352
 for playful instruction, 299–300
 realism, domain knowledge and, 338–339
 realism in, 338–339
 segmenting principle, 41–42
 Teachable Agents, 123–124, 136
 technology centered approach to, 32, 167
 user-controlled, 52, 231, 352
 Differential theory described, 167–168
 Directive function of animation, 315–316
 Display panel interrogation patterns
 multimedia learning research study, 151, 155–156, 157–158, 161
 and user control in cognitive
 processing, 214, 229–230
 Domain-general knowledge
 comprehension and, 9–10, 11
 individual differences, effects on, 16
 Domain knowledge
 and animation design realism, 338–339
 in cognitive load theory, 197, 202, 230
 cognitive processing and, 343–344
 and comprehension, 9–12, 209
 flushing cistern experiments, 13, 19–21
Subject Index

interrogation of animations and, 66, 212, 215–216
and intrinsic load, 106–107
learning enhancement by, 9–12, 15–17, 25, 170, 177–178, 209, 364–365
and mental representations, 19–21, 66
in text comprehension, 5, 22
user-controllable animations, 220, 223, 224, 225, 230
Domain-relevant knowledge, comprehension and, 9–10
Domain-specific knowledge
animation and text learning, 22
comprehension and, 10–11, 15–17, 19–21
individual differences, effects on, 16
Dots, 312
Dual-channel theory
Animated Pedagogical Agents in, 189
described, 33, 143, 169
Dynamic contrast, 322, 334, 343
Dynamic visualizations
as content representations, 360–361
design and learning strategies, 72–74, 88–89
processing issues in, 71–72
Dynamic visualizations study
achievement
differences in, 82–86
overall, 79–82
cognitive processing
instructional materials, differences in, 86–87
strategies employed, 87–88
times, differences in, 84, 87
design
described, 74–75
and learning strategies, 72–74
materials/procedure, 75–79
user-control, results of, 211–212

Effectiveness of animations
by animation type, 100–105, 111–112
described, vii–viii, 3, 13
design and, 30–32, 242, 270, 291–292, 308, 349
enabling/facilitation functions, 100
in formal instruction, 288–289
hunting the Snark game, 297–298
in informal instruction, 293–294, 300
multimedia learning, 141, 142
playful instruction, 297–298, 300–301
sequential presentation, 40–41
simultaneous presentation, 40–41
time and date difference study, 100–102,
105, 107–109
Enabling functions in animations
as application, 145
defined, 105, 316–317
factors affecting, 102, 111–112, 366
manipulation pictures, 101, 107–109
stepwise simulation pictures, 104
Encoding in cognitive processing, 175–176
Essential processing. See also Intrinsic load
described, 35–36
management, principles of, 38, 41–43
Events as discrete thought forms, 266–267
Executable models, Teachable Agents,
118–119
Exhibits, 280
Expertise Reversal Effect, 12
Explanations, design of, 281–282
Exploded diagrams, 275
Expository representations,
student-authored
conventional simulations, similarity to
and student rating, 248–249, 253, 254, 256–257
domain knowledge in, 367
evaluation of, 240, 244–247, 249–255
learning, approaches to, 242–243
learning progression in, 254–255,
367–368
media use and student rating, 246, 248,
252–254, 255–256
overview, 235–238, 255, 366–367
student use of, 238–242, 256
Extra-pictoral devices, diagram
enrichment with, 271, 278, 281.
See also Signaling cues; specific devices
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraneous cognitive load</td>
</tr>
<tr>
<td>animation type and, 105</td>
</tr>
<tr>
<td>described, 36–38, 41</td>
</tr>
<tr>
<td>factors affecting, 94</td>
</tr>
<tr>
<td>management, principles of, 37, 41–43, 176</td>
</tr>
<tr>
<td>reduction of, 36–37, 39–40, 41, 88, 111–112, 342–343</td>
</tr>
<tr>
<td>and the redundancy principle, 39, 147–148</td>
</tr>
<tr>
<td>Extraneous processing</td>
</tr>
<tr>
<td>described, 35</td>
</tr>
<tr>
<td>reduction of, 36, 38</td>
</tr>
<tr>
<td>Eye-mind assumption, 330</td>
</tr>
<tr>
<td>Facilitating functions in animations</td>
</tr>
<tr>
<td>continuous simulation pictures, 101, 109–111</td>
</tr>
<tr>
<td>defined, 105, 316–317</td>
</tr>
<tr>
<td>factors affecting, 102, 111–112</td>
</tr>
<tr>
<td>learning, effects on, 104–105, 110–111</td>
</tr>
<tr>
<td>spatial-temporal invariants, 319–320</td>
</tr>
<tr>
<td>stepwise simulation pictures, 110, 111</td>
</tr>
<tr>
<td>Facilitation and learning, 100</td>
</tr>
<tr>
<td>Feasibility, factors affecting, vii</td>
</tr>
<tr>
<td>Fibonacci Number Series, 245, 247, 250</td>
</tr>
<tr>
<td>Flushing cistern study</td>
</tr>
<tr>
<td>described, 13–14</td>
</tr>
<tr>
<td>diagram/text of, 14</td>
</tr>
<tr>
<td>feature usage, verification of, 18–19 results</td>
</tr>
<tr>
<td>animation-only, 14–15</td>
</tr>
<tr>
<td>animation vs. static diagrams, 15–17</td>
</tr>
<tr>
<td>domain knowledge in, 13, 19–21</td>
</tr>
<tr>
<td>hypermedia computer manuals, 23–24</td>
</tr>
<tr>
<td>interactivity, effects of, 17–18</td>
</tr>
<tr>
<td>text comprehension, 21–24</td>
</tr>
<tr>
<td>visual signaling effects, 18</td>
</tr>
<tr>
<td>Formal instruction, animations in</td>
</tr>
<tr>
<td>design implications, 291–292</td>
</tr>
<tr>
<td>effectiveness of, 288–289</td>
</tr>
<tr>
<td>learning process supported, 289–291</td>
</tr>
<tr>
<td>overview, 288</td>
</tr>
<tr>
<td>Format of instruction</td>
</tr>
<tr>
<td>cognitive load and, 94, 147–148</td>
</tr>
<tr>
<td>animation and text comprehension, 22</td>
</tr>
</tbody>
</table>
Hunting the Snark game
 effectiveness of, 297–298
 overview, 296–297, 298
Hypermedia computer manuals, 23–24
Hypertext, design/learning strategy
 integration in, 73–74
Iconic style of learning, 172–173
Imagination, fostering, 296
Immediacy assumption, 330–331
Induction learning studies, 130–131, 133, 137
Inferences
 of motion
 dynamic schemas in, 320
 from static diagrams, 10, 15, 309–312, 340
 spatial/temporal, 340–343
Informal instruction, animations in. See also Animated pedagogical agents
 design implications, 295
 effectiveness of, 293–294, 300
 learning processes supported by, 294–295
 overview, 292–293
Initiative in learning interactions, 121, 122, 123–124, 171
Intrinsic load
 factors affecting, 93–94
Instruction method, learning enhancement and. See also Format of instruction
Integration
 challenges to, 72, 241–242
 in cognitive processing, 35, 88, 186, 305
 optimization of, 243
 of Teachable Agents, 117–119 (See also Teachable Agents (TAs))
 in text/design/learning strategy, 73
Interactivity
 in Animated Pedagogical Agents, 199–200, 201–202, 359 (See also Animated pedagogical agents (APAs))
 and comprehension, 17–18, 52, 294, 361–362
 in design, benefits of, 123–124, 292
 learning, effects on, 17–18
 low-domain knowledge learners, 17–18, 19, 20–21, 26
 measurement of, 18–19
 models of, 119–120
 principle of, 202
 in Teachable Agents, 115, 120 (See also Teachable Agents (TAs))
 technologies, creation of, 123–124
Interactivity hypothesis
 experimental evaluation of, 199–200, 201–202
 overview, 184, 185, 191–192, 198–199
Internal visualizations, animations as augmentation of, 8
Interrogation strategies
 animations, 330
 computer algorithm learning study, 238–242
 display panel
 multimedia learning research study, 151, 155–156, 157–158, 161
 and user control in cognitive processing, 214, 229–230
 domain knowledge and, 66, 212, 215–216
 evaluation of, 171–172
 multimedia learning research study (See Multimedia learning)
 static diagrams, 52, 330
 user choices of, 170–172
 weather map animation study (See Weather map animation study)
Intrinsic load. See also Essential processing
 described, 35–36, 45
 factors affecting, 93–94, 105–106
 management, principles of, 38, 41–43, 111–112
Iterative model of learning
 described, 10–11
 high-domain knowledge learners, 20–21
 measurement of, 19, 20–21
Key frames, 324–325, 337–338, 342–343, 349
Knot-tying study, 211, 213, 214, 231
Subject Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language as communication tool, 12, 196. See also Text</td>
<td>12, 196</td>
</tr>
<tr>
<td>Learner centered approach to design described, 32</td>
<td></td>
</tr>
<tr>
<td>Learning. See also Comprehension ability, misconception and, 11</td>
<td>32</td>
</tr>
<tr>
<td>agent thought structure, adoption of, 124–125</td>
<td>124–125</td>
</tr>
<tr>
<td>algorithms, 238–239</td>
<td>238–239</td>
</tr>
<tr>
<td>Animated Pedagogical Agents promotion of, 188–190, 198 (See also Animated pedagogical agents (APAs))</td>
<td>188–190, 198</td>
</tr>
<tr>
<td>animation-only, 14–15</td>
<td>14–15</td>
</tr>
<tr>
<td>animation vs. static display, 12, 39, 96–98, 100, 126, 144, 146</td>
<td>96–98, 100, 126, 144, 146</td>
</tr>
<tr>
<td>animation’s role in, 166–167</td>
<td>166–167</td>
</tr>
<tr>
<td>assessment of, 190</td>
<td>190</td>
</tr>
<tr>
<td>challenges to, 36, 37, 38, 208–210, 363–365</td>
<td>363–365</td>
</tr>
<tr>
<td>defined, 93, 142</td>
<td>93, 142</td>
</tr>
<tr>
<td>conditions, 142, 143–145, 210–211, 237</td>
<td>142, 143–145, 210–211, 237</td>
</tr>
<tr>
<td>and instruction method, mental representations, 143, 144</td>
<td>143, 144</td>
</tr>
<tr>
<td>spatial visualization ability, 15–17, 20, 25</td>
<td>15–17, 20, 25</td>
</tr>
<tr>
<td>facilitation and, 100</td>
<td>100</td>
</tr>
<tr>
<td>impedance of by Animated Pedagogical Agents, 191–192, 201</td>
<td>191–192, 201</td>
</tr>
<tr>
<td>by animations, 309</td>
<td>309</td>
</tr>
<tr>
<td>by user control, 212</td>
<td>212</td>
</tr>
<tr>
<td>interactions inclusion in, 121, 124–126</td>
<td>121, 124–126</td>
</tr>
<tr>
<td>initiative in, 121, 122, 123–124, 171</td>
<td>121, 122, 123–124, 171</td>
</tr>
<tr>
<td>interactivity, effects of, 17–18</td>
<td>17–18</td>
</tr>
<tr>
<td>iterative model of described, 10–11</td>
<td>10–11</td>
</tr>
<tr>
<td>measurement of, 19, 20–21</td>
<td>19, 20–21</td>
</tr>
<tr>
<td>metacognition, promotion of, 127–130, 172</td>
<td>127–130, 172</td>
</tr>
<tr>
<td>multiple perspective enhancement of, 236, 257–258</td>
<td>236, 257–258</td>
</tr>
<tr>
<td>optimization of, 3, 26–27, 114</td>
<td>3, 26–27, 114</td>
</tr>
<tr>
<td>performance and, 177</td>
<td>177</td>
</tr>
<tr>
<td>persona effect on, 190, 294–295</td>
<td>190, 294–295</td>
</tr>
<tr>
<td>self-regulation of, 186–188</td>
<td>186–188</td>
</tr>
<tr>
<td>spatial style of, 172–173</td>
<td>172–173</td>
</tr>
<tr>
<td>strategies, and dynamic visualization design, 72–74, 88–89</td>
<td>72–74, 88–89</td>
</tr>
<tr>
<td>styles of, 172–173</td>
<td>172–173</td>
</tr>
<tr>
<td>success, factors affecting, 73</td>
<td>73</td>
</tr>
<tr>
<td>sweet spot social interactions in, 120–122</td>
<td>120–122</td>
</tr>
<tr>
<td>by Teachable Agents, 117</td>
<td>117</td>
</tr>
<tr>
<td>and text, 21–24, 334</td>
<td>21–24, 334</td>
</tr>
<tr>
<td>verbal style of, 172, 173</td>
<td>172, 173</td>
</tr>
<tr>
<td>ZPD issues in, 107</td>
<td>107</td>
</tr>
<tr>
<td>Lightning storm development study, 211</td>
<td>211</td>
</tr>
<tr>
<td>Limited capacity, 33</td>
<td>33</td>
</tr>
<tr>
<td>Lines as communication tool, 271–275, 281</td>
<td>271–275, 281</td>
</tr>
<tr>
<td>Linguistic descriptions. See Text</td>
<td></td>
</tr>
<tr>
<td>Logical pictures, 307, 316</td>
<td>307, 316</td>
</tr>
<tr>
<td>Long-term memory in cognitive processing, 93–94</td>
<td>93–94</td>
</tr>
<tr>
<td>Low-domain knowledge learners aids for, 11–12</td>
<td>11–12</td>
</tr>
<tr>
<td>interactive learning by, 17–18, 19, 20–21, 26</td>
<td>17–18, 19, 20–21, 26</td>
</tr>
<tr>
<td>visual signaling and, 18</td>
<td>18</td>
</tr>
<tr>
<td>Low-spatial ability learners assembly instructions study, 276–278</td>
<td>276–278</td>
</tr>
<tr>
<td>comprehension and, 6–9, 15, 22, 215</td>
<td>6–9, 15, 22, 215</td>
</tr>
<tr>
<td>interactivity/cues and, 19</td>
<td>19</td>
</tr>
<tr>
<td>Machines comprehension of, and everyday interactions, 9–10</td>
<td>9–10</td>
</tr>
<tr>
<td>mental animation of, 5, 7, 15</td>
<td>5, 7, 15</td>
</tr>
<tr>
<td>as model, 4–5</td>
<td>4–5</td>
</tr>
<tr>
<td>static model of, 5, 7</td>
<td>5, 7</td>
</tr>
<tr>
<td>Manipulation pictures in circumnavigation study, 103</td>
<td>103</td>
</tr>
<tr>
<td>effects of, 100–105</td>
<td>100–105</td>
</tr>
</tbody>
</table>
enabling functions, 94–95, 101, 107–109
in time state display, 95, 100
Maps, 268–270, 280–281
Meaningful learning outcomes in
mechanics study
Mechanical ability and spatial ability, 7
Mechanical events, 8
Mechanics study
achievement
differences in, 82–86
overall, 79–82
design, 74, 76
instructional materials
described, 77–79
processing, differences in, 86–87
learning procedure, 75–79
motion, unidimensional, 78
solution frequencies/standard deviations, 80
Memory
chunking in, 325–327
in cognitive processing, 35, 93–94,
106–107, 176, 316–317, 342–343
and comprehension, 7–8
coding of, Gestalt theory, 321
key frames in, 325
and visualization, 142–143
working (See Working memory)
Mental representations
animation in development of, 289–290,
312, 313–314, 341–342
challenges to, 72, 328–329, 331–333, 343
of children, 146
in cognitive processing
depth aspect of, 169, 170, 174
overview, 169–170, 173, 290, 313,
339–340
domain knowledge and, 19–21, 66
of dynamic systems
user comprehension and, 50–51,
66–68, 360–361
via static diagrams vs. animations,
309–312, 348–349
key frames in, 325, 342–343
learning enhancement by, 143, 144
as learning tool, 143, 144
in machine comprehension, 5, 7, 15
Metacognition
promotion of, 127–130, 172
questions, multimedia learning
research study, 157–158, 162
Misconception
creation of, from animations,
267–268
and learning ability, 11
reconciling of, 241
Mismatch challenge, 363–364
Mixed reality games, 296–297, 298–299
Moby agent, 130–133, 135
Modality effect of Animated Pedagogical
Agents, 196–197, 201
Modality principle, 37, 38, 43, 202
Motivation
Animated Pedagogical Agents and,
186–188, 191–192, 201 (See also
Social-cue hypothesis)
and animation, 146
assessment of, 190
Movement
changes in, microevents vs.
macroevents, 327–328
inference of
dynamic schemas in, 320
from static diagrams, 10, 15, 309–312,
340
Mr. Davis agent, 127–129
Multimedia effect described, 30
Multimedia learning
cognitive design principles, 45, 88
cognitive theory of described, 35–36,
72–73
documents, effectiveness of, 141, 142
research study
assessment condition, 149, 150, 152,
155, 157, 160–161
data analysis, 152–153
described, 148–149, 159
interrogation patterns and display
panel order, 151, 155–156, 157–158,
161
interrogation strategy frequency,
153–155, 156, 158
interrogation strategy types, 152, 153,
154, 159–160
Multimedia learning (cont.)
materials, 150, 151
metacognitive questions, 157–158, 162
no-assessment condition, 149, 150, 152, 157, 160–161
participants/design, 150
preferences, text vs. animation, 160
procedure, 151–152
text/pictoral integration, 156, 160

Narration, benefits of, 30, 334
Newton’s laws of motion study, 146
Nitrogen cycle, portrayal of, 275

Object recognition, 322
One representational format only strategy, 153–154, 155, 159–160
Optimization of animations, 264–265
Organization in cognitive processing, 35, 38–39, 266–267
Overconfidence and learning ability, 11
Overwhelming
Animated Pedagogical Agents, 185, 198–199
and attention, 331–333
user control and, 172
and the ZPD, 107

PAKMA, 77–79
Paper Folding Test, 13
Participant classification, flushing cistern experiments, 13–14
Partonomy, portrayal of, 271
Perceptual bias, speed issues and, 333
Perceptual processing, selectivity of, 329–333
Performance and learning, 177
Persona effect on learning, 190, 294–295
Personalization principle, 37, 38, 44.
See also Social-cue hypothesis
Perspective, portrayal of, 271
Picture/word/gesture parallels, 280
Playfair, William, 307
Playful instruction, animations in design implications, 299–300
effectiveness of, 297–298, 300–301
learning processes supported, 298–299
overview, 287, 295–297
Points as communication tool, 280
PPPersona, 189
Pre-training principle
described, 37, 38, 42–43
mechanics/statistics study, 75, 76, 82–86
weather map study, 56
Prediction
learning and, 26, 50
Teachable agent-guided, 130–132, 133
weather-map animation study, 53–54
Premature convergence, 241, 243, 255
Principle of Apprehension, 266
Problem-solving transfer performance increase in, via animation, 30
issues in, 72, 290–291
mechanics/statistics study, 75, 78–79, 82, 86–87
multiple representations in, 243
Productive agency, achievement of, 119–122
Pulley system study, 213–214, 267
Pumpkin World, 117–118
Pythagorean theorem study, 144
Realism
in animations, 308, 314–315
behavioral, 335–337, 341–342
in design, 338–339
granularity and, 335
Reasoning abilities, Teachable Agents, 116, 117, 124, 126
Recursion tree diagrams, 240
Redundancy principle, 37, 38, 39, 147–148
Representational function of animation, 315–316
Rote learning outcomes in cognitive processing, 35, 36
Route maps, 268–270, 280–281
Salience, 320–322, 334
Segmenting principle, 37, 38, 41–42, 324, 344
Sequential presentation, effectiveness of, 40–41
Shared-Initiative Teaching condition, 128–130
Signaling cues. See also Specific cue types
comprehension and, 17–18
diagram enrichment with, 271, 278, 281
functions of, 316, 334, 343, 349–350
in gear function study, 215–216, 219–220, 224, 225
history of, 307
in user-controllable animations, 215–216, 219–220, 224, 225
Signaling principle, 37, 38–39
Simulation pictures, 95–96, 100–105
Simultaneous presentation, effectiveness of, 40–41
The Snark game
effectiveness of, 297–298
overview, 296–297, 298
Social-cue hypothesis, Animated
Pedagogical Agents in, 184, 185, 191–192, 196, 201
Social situations, teaching to children, 295–296
Spatial chunking, 325–327
Spatial contiguity principle, 37, 38, 39–40
Spatial style of learning, 172–173
Spatial-temporal invariants, 318–322
Spatial/temporal structures in
animations, 317–318
Spatial visualization ability
in animation comprehension, 6–8, 9, 209–210, 212, 215
assembly instructions study, 276–278
described, 6
in graphics comprehension, 5
individual differences, 16
learning enhancement by, 15–17, 20, 25
measurement, flushing cistern experiments, 13
and user control parameters, 213–214
Speed issues
and perceptual bias, 333
in processing, 51, 331, 341–342, 345–346
Spitzweg, Carl, 307
Split attention effects, 209
Static diagrams
animations vs., 304–305
as communication tool, 268–270
comprehension processes, 6–7, 71, 328–329
design of, vii, 271
effectiveness of, as learning tool, 71 exploded, 275
extra-pictorial devices, enrichment with, 271, 278, 281
inference of motion from, 10, 15, 309–312, 340
and judgment of mechanical events, 8
limitations of, 288, 312
in machine model, 4–5
as narrative, 270–271
student-authored (See Expository representations, student-authored)
with text, comprehension of, 22–23
user interrogation of, 52
Statistics study
achievement differences in, 82–85, 86
overall, 79–82, 83
design, 74
instructional materials described, 75–77
processing, differences in, 86–87
learning procedure, 75–79
Stepwise simulation pictures
circumnavigation study, 103–104
enabling functions in animations, 104
facilitating functions in, 110, 111
in time zone difference display, 101–102
Steve described, 183
Strategy shift strategy, 154, 155
Stroop effect, 170
Structure/function, portrayal of, 271
Structure mapping, 88
Successive study strategy, 153, 154, 155, 160
Sweet spot. See Productive agency;
Teaching
Systematic alternation strategy, 153, 154, 155, 159
Subject Index

- **Taxonomy, portrayal of**, 271
 - Teachable Agents (TAs)
 - agent thought structure, adoption of, 124–125
 - animated thought, benefits of, 125–126, 136
 - animations, use of, 114, 169
 - concept mapping, 124, 129
 - described, 115–117, 119, 135–137
 - design of, 123–124, 136
 - inclusion studies, 124–126
 - independent performance studies, 130–135
 - interactivity in, 115, 120
 - metacognition, promotion of, 127–130, 172
 - Moby, 130–133, 135
 - Mr. Davis, 127–129
 - principles of, 114–115
 - productive agency, achievement of, 119–122

- **Teaching**
 - agent thought structure, adoption of, 124–125
 - algorithms, 238–239
 - approaches to, 365–366
 - metacognition, promotion of, 127–130, 172
 - multiple perspective enhancement of, 257–258
 - sweet spot social interactions in, 122
 - Technology centered approach to design
 - described, 32, 167
 - Temporal categorization, principles of, 323–328
 - Temporal chunking, 325–327
 - Temporal contiguity principle, 37, 38, 40–41
 - Temporal patterns
 - portrayal of, 271, 275–276, 314–316
 - visual processing of, 333, 348
 - Temporal scale, animations rendition of, 269

- **Text**
 - benefits of, 5, 12, 21–22
 - comprehension
 - domain knowledge in, 5, 22
 - flushing cistern experiments, 21–24
 - high-spatial ability learners, 22
 - overview, 21–24, 26
 - design/learning strategy integration in, 73
 - learning and, 21–24, 334
 - Thought, animation of, 116
 - Time and date difference study
 - animation types, effectiveness of, 100–102, 105, 107–109
 - cognitive processing requirements, 100, 173
 - materials, 97, 102
 - Top-down model of animation
 - comprehension described, 4, 50
 - Top-down model of event processing, 323
 - Trajectory judgment
 - animation’s role in, 266
 - and spatial ability, 8–9
 - Transformation defined, 144
 - Transition defined, 145
 - Translation defined, 144–145
 - Triple-A Game Show, 118

- **Underwhelming phenomenon**, 148

- **User-controllable animations**. See also
 - Weather map animation study
 - benefits of, 52, 210, 345–346
 - dynamic systems, user comprehension of, 50–51
 - features of, 212–214
 - gear function study
 - comprehension test scores, 224
 - comprehension tests described, 220–222
 - domain knowledge in, 220, 223, 224, 225, 230
 - learning gains in, 223–225
 - methods, 216–222
overview, 216, 229–231
results, 222–229
spatial ability measurement, 220, 221–223, 228
study time analysis, 226–228, 229
overview, 345
processing challenges, 49, 51–53, 208–210
signaling cues in, 215–216, 219–220, 224, 225
strategic use of, 347
task content in, 214–215
vs. noncontrollable, 210–212

Verbal style of learning, 172, 173
Visual attention, comprehension and, 11, 142–143
Visual communication, history of, 306–308
Visualization
comprehension and, 11, 142–143
dynamic (See Dynamic visualizations; Dynamic visualizations study)
spatial (See Spatial visualization ability)
support, as animation application, 145
VISUALSTAT, 75–77
Voice principle, 37, 38, 44–45

Weak alternation strategy, 154, 155
Weather map animation study
animation section replay, 63–64
cognitive processing requirements, 173,
214–215
cognitive processing strategies, 147, 237
data analysis, 56–57
described, 53–54, 66–68, 147
domain knowledge in comprehension, 209
frame visit distribution patterns,
59–60, 61–62, 66
interrogation patterns, 57–58, 60,
62–63, 64, 66, 147, 213
interrogation scope, 60–62, 66
interrogation speeds, 60–61, 62–63, 64
mental animation adequacy in, 66
method, 55, 56
procedure/materials, 54–56
WhizLow described, 183
Woggles, 293–294
Word/picture/gesture parallels, 280
Working memory
in cognitive processing, 93–94, 106–107,
176, 316–317, 342–343
enabling/facilitating functions, 94–100
experimental vs. differential
approaches to, 168
germane load and, 106–107, 176
and the modality effect, 196–197, 201
visual perception and, 329–330

Zone of proximal development (ZPD),
105–107, 108, 110