Contents

Preface

1 Introduction

1.1 Fusion reactor operating criteria
1.2 Plasma stability limits on fusion reactor performance
1.3 Power exhaust limits on fusion reactor performance
1.4 Chapter summary
1.5 Units and notation
1.6 Further reading

2 Magnetized plasma physics

2.1 What is a plasma?
2.1.1 Plasma parameter
2.1.2 Magnetization parameter
2.2 Charged particle motion
2.2.1 Guiding centre drifts
2.2.2 Canonical (angle-action) variables
2.3 Kinetic description
2.3.1 Phase space conservation laws
2.3.2 Guiding centre kinetic theory
2.4 Fluid description
2.4.1 Co-ordinate space conservation laws
2.4.2 Guiding centre fluid theory
2.5 The relation between MHD- and drift-ordered dynamics
2.6 Further reading

3 Magnetized plasma equilibrium

3.1 Magnetic geometry and flux co-ordinates
3.2 Plasma current in MHD equilibrium
3.2.1 Hamada co-ordinates
3.2.2 Symmetry co-ordinates
Contents

3.3 Large aspect ratio, toroidal equilibrium 92
 3.3.1 General screw pinch 92
 3.3.2 Cylindrical tokamak 95
 3.3.3 Large aspect ratio (small ϵ) tokamak 95

3.4 Further reading 100

4 Magnetized plasma stability 101
 4.1 Hydrodynamic waves and instabilities 101
 4.2 MHD waves and instabilities 107
 4.2.1 Ideal MHD waves in a uniform plasma 107
 4.2.2 MHD waves and instabilities in a stratified plasma 109
 4.2.3 Ideal MHD waves and instabilities in a confined plasma 109
 4.2.4 Ideal MHD waves and instabilities in a general screw pinch 115
 4.2.5 Flute-reduced MHD 117
 4.2.6 Non-homogeneous shear Alfvén waves 122
 4.2.7 Current-driven ideal MHD instabilities: kink modes 123
 4.2.8 Pressure-driven ideal MHD instabilities: ballooning modes 127
 4.2.9 Resistive MHD instabilities: tearing modes 142
 4.3 Drift-waves and instabilities 151
 4.4 Kinetic waves and instabilities 157
 4.5 Further reading 161

5 Collisional transport in magnetized plasmas 162
 5.1 Collisional transport in a neutral gas 163
 5.1.1 Maxwell–Boltzmann collision operator 163
 5.1.2 Chapman–Enskog expansion 166
 5.1.3 Fokker–Planck collision operator 170
 5.2 Charged particle collisions in a plasma 172
 5.2.1 Coulomb collision operator 172
 5.2.2 Test particle dynamics in a plasma 178
 5.2.3 Collisional momentum exchange 179
 5.2.4 Collisional energy (heat) exchange 182
 5.3 Collisional transport in a plasma 184
 5.3.1 Collisional transport in an unmagnetized plasma 184
 5.3.2 Collisional transport in a cylindrical plasma 188
 5.3.3 Collisional transport in a toroidal plasma 200
 5.4 Further reading 219

6 Turbulent transport in magnetized plasmas 220
 6.1 Hydrodynamic turbulence 220
 6.1.1 Transition to turbulence in hydrodynamics 222
 6.1.2 HD turbulence in 3D 224
 6.1.3 HD turbulence in 2D 239
Contents

6.2 MHD turbulence 243
 6.2.1 MHD turbulence in 3D 245
 6.2.2 MHD turbulence in 2D 251
6.3 DHD turbulence 252
 6.3.1 Drift-fluid turbulence 253
 6.3.2 Gyro-fluid turbulence 275
 6.3.3 Drift-kinetic and gyro-kinetic turbulence 280
6.4 Comparison of collisional and turbulent diffusivities 283
6.5 Further reading 285

7 Tokamak plasma boundary and power exhaust 286
 7.1 The scrape-off layer (SOL) 287
 7.1.1 Plasma–surface interactions 287
 7.1.2 Plasma–neutral interactions 295
 7.1.3 SOL geometry: limiter, divertor and ergodic SOL 300
 7.1.4 SOL equilibrium, stability and transport 307
 7.1.5 SOL modelling approaches 318
 7.2 L-mode power exhaust: edge-SOL turbulence 322
 7.2.1 Experimental observations 323
 7.2.2 Numerical simulations 328
 7.3 H-mode power exhaust: edge localized modes (ELMs) 353
 7.3.1 Edge transport barrier 353
 7.3.2 Power exhaust in between ELMs 367
 7.3.3 Power exhaust during ELMs 376
 7.3.4 Power exhaust control techniques 388
 7.4 Further reading 394

8 Outlook: power exhaust in fusion reactors 395
 8.1 ITER 395
 8.2 DEMO 401
 8.3 PROTO and beyond 403
 8.4 Further reading 404

Appendix A Maxwellian distribution 405
Appendix B Curvilinear co-ordinates 407
References 410
Index 426