Lie Algebras of Finite and Affine Type

Lie Algebras of Finite and Affine Type

R. W. CARTER

Mathematics Institute University of Warwick

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521851381

© Cambridge University Press 2005

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2005 This digitally printed paperback version 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN 978-0-521-85138-1 Hardback ISBN 978-1-107-47198-6 Paperback

Digitally Printed in Korea at Kyobo Book Centre

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to Sandy Green

Contents

	Prefe	ace	<i>page</i> xiii
1	Basic concepts		1
	1.1	Elementary properties of Lie algebras	1
	1.2	Representations and modules	5
	1.3	Abelian, nilpotent and soluble Lie algebras	7
2	Representations of soluble and nilpotent Lie algebras		11
	2.1	Representations of soluble Lie algebras	11
	2.2	Representations of nilpotent Lie algebras	14
3	Cartan subalgebras		23
	3.1	Existence of Cartan subalgebras	23
	3.2	Derivations and automorphisms	25
	3.3	Ideas from algebraic geometry	27
	3.4	Conjugacy of Cartan subalgebras	33
4	The Cartan decomposition		36
	4.1	Some properties of root spaces	36
	4.2	The Killing form	39
	4.3	The Cartan decomposition of a semisimple Lie algebra	45
	4.4	The Lie algebra $\mathfrak{sl}_n(\mathbb{C})$	52
5	The root system and the Weyl group		56
	5.1	Positive systems and fundamental systems of roots	56
	5.2	The Weyl group	59
	5.3	Generators and relations for the Weyl group	65

viii	contents			
6	The	Cartan matrix and the Dynkin diagram	69	
	6.1	The Cartan matrix	69	
	6.2	The Dynkin diagram	72	
	6.3	Classification of Dynkin diagrams	74	
	6.4	Classification of Cartan matrices	80	
7	The existence and uniqueness theorems			
	7.1	Some properties of structure constants	88	
	7.2	The uniqueness theorem	93	
	7.3	Some generators and relations in a simple Lie algebra	96	
	7.4	The Lie algebras $L(A)$ and $\tilde{L}(A)$	98	
	7.5	The existence theorem	105	
8	The simple Lie algebras			
	8.1	Lie algebras of type A_l	122	
	8.2	Lie algebras of type D_l	124	
	8.3	Lie algebras of type B_l	128	
	8.4	Lie algebras of type C_l	132	
	8.5	Lie algebras of type G_2	135	
	8.6	Lie algebras of type F_4	138	
	8.7	Lie algebras of types E_6 , E_7 , E_8	140	
	8.8	Properties of long and short roots	145	
9	Some universal constructions		152	
	9.1	The universal enveloping algebra	152	
	9.2	The Poincaré-Birkhoff-Witt basis theorem	155	
	9.3	Free Lie algebras	160	
	9.4	Lie algebras defined by generators and relations	163	
	9.5	Graph automorphisms of simple Lie algebras	165	
10	Irreducible modules for semisimple Lie algebras			
	10.1	Verma modules	176	
	10.2	Finite dimensional irreducible modules	186	
	10.3	The finite dimensionality criterion	190	
11	Further properties of the universal enveloping algebra		201	
	11.1	Relations between the enveloping algebra		
		and the symmetric algebra	201	
	11.2	Invariant polynomial functions	207	
	11.3	The structure of the ring of polynomial invariants	216	
	11.4	The Killing isomorphisms	222	

	Contents	ix
	11.5 The centre of the enveloping algebra	226
	11.6 The Casimir element	238
12	Character and dimension formulae	241
	12.1 Characters of <i>L</i> -modules	241
	12.2 Characters of Verma modules	244
	12.3 Chambers and roots	246
	12.4 Composition factors of Verma modules	255
	12.5 Weyl's character formula	258
	12.6 Complete reducibility	262
13	Fundamental modules for simple Lie algebras	267
	13.1 An alternative form of Weyl's dimension formula	267
	13.2 Fundamental modules for A_l	268
	13.3 Exterior powers of modules	270
	13.4 Fundamental modules for B_l and D_l	274
	13.5 Clifford algebras and spin modules	281
	13.6 Fundamental modules for C_l	292
	13.7 Contraction maps	295
	13.8 Fundamental modules for exceptional algebras	303
14	Generalised Cartan matrices and Kac–Moody algebras	
	14.1 Realisations of a square matrix	319
	14.2 The Lie algebra $\tilde{L}(A)$ associated with a complex matrix	322
	14.3 The Kac–Moody algebra $L(A)$	331
15	The classification of generalised Cartan matrices	
	15.1 A trichotomy for indecomposable GCMs	336
	15.2 Symmetrisable generalised Cartan matrices	344
	15.3 The classification of affine generalised Cartan matrices	351
16	The invariant form, Weyl group and root system	
	16.1 The invariant bilinear form	360
	16.2 The Weyl group of a Kac–Moody algebra	371
	16.3 The roots of a Kac-Moody algebra	377

х	Contents	
17	Kac–Moody algebras of affine type	386
	17.1 Properties of the affine Cartan matrix	386
	17.2 The roots of an affine Kac–Moody algebra	394
	17.3 The Weyl group of an affine Kac–Moody algebra	404
18	Realisations of affine Kac–Moody algebras	416
	18.1 Loop algebras and central extensions	416
	18.2 Realisations of untwisted affine Kac–Moody algebras	421
	18.3 Some graph automorphisms of affine algebras	426
	18.4 Realisations of twisted affine algebras	429
19	Some representations of symmetrisable Kac-Moody algebras	452
	19.1 The category \mathcal{O} of $L(A)$ -modules	452
	19.2 The generalised Casimir operator	459
	19.3 Kac' character formula	466
	19.4 Generators and relations for symmetrisable algebras	474
20	Representations of affine Kac–Moody algebras	484
	20.1 Macdonald's identities	484
	20.2 Specialisations of Macdonald's identities	491
	20.3 Irreducible modules for affine algebras	494
	20.4 The fundamental modules for $L(\tilde{A}_1)$	504
	20.5 The basic representation	508
21	Borcherds Lie algebras	519
	21.1 Definition and examples of Borcherds algebras	519
	21.2 Representations of Borcherds algebras	524
	21.3 The Monster Lie algebra	530
	Appendix	540
	Summary pages – explanation	540
	Type A_l	543
	Type B_l	545
	Type C_l	547
	Type D_l	549
	Type E_6	551
	Type E_7	553
	Type E_8	555
	Type F_4	557
	Type G_2	559

	Contents	xi
Type \tilde{A}_1		561
Type $\tilde{A}_1' = {}^2 \tilde{A}_2$	(1st description)	563
	(2nd description)	565
Type \tilde{A}_l		567
Type \tilde{B}_l		570
Type $\tilde{B}_l^t = {}^2 \tilde{A}_{2l-1}$		573
Type \tilde{C}_l		576
Type $\tilde{C}_l^t = {}^2 \tilde{D}_{l+1}$		579
Type $\tilde{C}_l' = {}^2 \tilde{A}_{2l}$	(1st description)	582
	(2nd description)	585
Type $ ilde{D}_4$		588
Type $\tilde{D}_l, l \ge 5$		590
Type \tilde{E}_6		593
Type \tilde{E}_7		596
Type \tilde{E}_8		599
Type \tilde{F}_4		602
Type $\tilde{F}_4^{t} = {}^2\tilde{E}_6$		604
Type \tilde{G}_2		606
Type $\tilde{G}_2^t = {}^3 \tilde{D}_4$		608
Notation	610	
Bibliography of boo	619	
Bibliography of arti	621	
Index	629	

Preface

Lie algebras were originally introduced by S. Lie as algebraic structures used for the study of Lie groups. The tangent space of a Lie group at the identity element has the natural structure of a Lie algebra, called by Lie the infinitesimal group. However, Lie algebras also proved to be of interest in their own right. The finite dimensional simple Lie algebras over the complex field were investigated independently by E. Cartan and W. Killing and the classification of such algebras was achieved during the decade 1890–1900. Basic ideas on the structure and representation theory of these Lie algebras were also contributed at a later stage by H. Weyl. Since then the theory of finite dimensional simple Lie algebras has found many and varied applications both in mathematics and in mathematical physics, to the extent that it is now generally regarded as one of the classical branches of mathematics.

In 1967 V. G. Kac and R. V. Moody independently introduced the Lie algebras now known as Kac–Moody algebras. The finite dimensional simple Lie algebras are examples of Kac–Moody algebras; but the theory of Kac–Moody algebras is much broader, including many infinite dimensional examples. The Kac–Moody theory has developed rapidly since its introduction and has also turned out to have applications in many areas of mathematics, including among others group theory, combinatorics, modular forms, differential equations and invariant theory. It has also proved important in mathematical physics, where it has applications to statistical physics, conformal field theory and string theory. The representation theory of affine Kac–Moody algebras has been particularly useful in such applications.

In view of these applications it seems clear that the theory of Lie algebras, of both finite and affine types, will continue to occupy a central position in mathematics into the twenty-first century. This expectation provides the motivation for the present volume, which aims to give a mathematically rigorous development of those parts of the theory of Lie algebras most relevant

Cambridge University Press 978-0-521-85138-1 - Lie Algebras of Finite and Affine Type R. W. Carter Frontmatter More information

xiv

Preface

to the understanding of the finite dimensional simple Lie algebras and the Kac–Moody algebras of affine type. A number of books on Lie algebras are confined to the finite dimensional theory, but this seemed too restrictive for the present volume in view of the many current applications of the Kac–Moody theory. On the other hand the Kac–Moody theory needs a prior knowledge of the finite dimensional theory, both to motivate it and to supply many technical details. For this reason I have included an account both of the Cartan–Killing–Weyl theory of finite dimensional simple Lie algebras and of the Kac–Moody theory, concentrating particularly on the Kac–Moody algebras of affine type. We work with Lie algebras over the complex field, although any algebraically closed field of characteristic zero would do equally well.

I was introduced to the theory of Lie algebras by an inspiring course of lectures given by Philip Hall at Cambridge University in the late 1950s. I have given a number of lecture courses on finite dimensional Lie algebras at Warwick University, and also two lecture courses on Kac–Moody algebras. The present book has developed as a considerably expanded version of the lecture notes of these courses. The main prerequisite for study of the book is a sound knowledge of linear algebra. I have in fact aimed to make this the sole prerequisite, and to explain from first principles any other techniques which are used in the development.

The most influential book on Kac–Moody algebras is the volume *Infinite-Dimensional Lie Algebras*, third edition (1990), by V. Kac. That formidable treatise contains a development of the Kac–Moody theory presupposing a knowledge of the finite dimensional theory, and includes information on several of the applications. The present volume will not rival Kac' account for experts on Kac–Moody algebras. About half of the theory covered in the 3rd edition of Kac' book has been included. However, for those new to the Kac–Moody theory, our account may be useful in providing a gentler introduction, making use of ideas from the finite dimensional theory developed earlier in the book.

The content of the book can be summarised as follows. The basic definitions of Lie algebras, their subalgebras and ideals, representations and modules, are given in Chapter 1. In Chapter 2 the standard results are proved on the representation theory of soluble and nilpotent Lie algebras. The results on representations of nilpotent Lie algebras are used extensively in the subsequent development. The key idea of a Cartan subalgebra is introduced in Chapter 3, where the existence and conjugacy of Cartan subalgebras are proved. We make use of some ideas from algebraic geometry to prove the conjugacy of Cartan subalgebras. In Chapter 4 the Killing form is introduced and used to describe the Cartan decomposition of a semisimple Lie algebra into root

Preface

spaces with respect to a Cartan subalgebra. The well-known example of the special linear Lie algebra is used to illustrate the general ideas. In Chapter 5 the Weyl group is introduced and shown to be a Coxeter group. This leads on to the definition of the Cartan matrix and the Dynkin diagram. The possible Dynkin diagrams and Cartan matrices are classified in Chapter 6, and in Chapter 7 the existence and uniqueness of a semisimple Lie algebra with a given Cartan matrix are proved. In Chapter 8 the finite dimensional simple Lie algebras are discussed individually and their root systems determined.

Chapters 9 to 13 are concerned with the representation theory of finite dimensional semisimple Lie algebras. We begin in Chapter 9 with the introduction of the universal enveloping algebra, of free Lie algebras and of Lie algebras defined by generators and relations. The finite dimensional irreducible modules for semisimple Lie algebras are obtained in Chapter 10 as quotients of infinite dimensional Verma modules with dominant integral highest weight. In Chapter 11 the enveloping algebra is studied in more detail. Its centre is shown to be isomorphic to the algebra of polynomial functions on a Cartan subalgebra invariant under the Weyl group, and to the algebra of polynomial functions on the Lie algebra invariant under the adjoint group. This algebra is shown to be isomorphic to a polynomial algebra. The properties of the Casimir element of the centre of the enveloping algebra are also discussed. These are important in subsequent applications to representation theory. Characters of modules are introduced in Chapter 12, and Weyl's character formula for the irreducible modules is proved. The fundamental irreducible modules for the finite dimensional simple Lie algebras are discussed individually in Chapter 13. Their discussion involves exterior powers of modules, Clifford algebras and spin modules, and contraction maps.

This concludes the development of the structure and representation theory of the finite dimensional Lie algebras. This development has concentrated particularly on the properties necessary to obtain the classification of the simple Lie algebras and their finite dimensional irreducible modules. Among the significant results omitted from our account are Ado's theorem on the existence of a faithful finite dimensional module, the radical splitting theorem of Levi, the theorem of Malcev and Harish-Chandra on the conjugacy of complements to the radical, and the cohomology theory of Lie algebras.

The theory of Kac–Moody algebras is introduced in Chapter 14, where the Kac–Moody algebra associated to a generalised Cartan matrix is defined. In fact there are two slightly different definitions of a Kac–Moody algebra which have been used. There is a definition in terms of generators and relations which appears the more natural, but there is a different definition, given by Kac in his book, which is more convenient when one wishes to show that a

xvi

Preface

given Lie algebra is a Kac–Moody algebra. I have used the latter definition, but have included a proof that, at least for symmetrisable generalised Cartan matrices, the two definitions are equivalent.

The trichotomy of indecomposable generalised Cartan matrices into those of finite, affine and indefinite types is obtained in Chapter 15. The Kac-Moody algebras of finite type turn out to be precisely the non-trivial finite dimensional simple Lie algebras, and a classification of those of affine type is given. The important special case of symmetrisable Kac-Moody algebras is also introduced. This class includes all those of finite and affine types, and some of those of indefinite type. In Chapter 16 it is shown that symmetrisable algebras have an invariant bilinear form, which plays a key role in the subsequent development. The Weyl group and root system of a Kac-Moody algebra are also discussed. The roots divide into real roots and imaginary roots, and a remarkable theorem of Kac is proved which characterises the set of positive imaginary roots. Kac-Moody algebras of affine type are singled out for more detailed discussion in Chapter 17. In Chapter 18 it is shown how some of them can be realised in terms of a central extension of a loop algebra of a finite dimensional simple Lie algebra, whereas the remainder can be obtained as fixed point subalgebras of these under a twisted graph automorphism.

Chapters 19 and 20 are devoted to the representation theory of Kac–Moody algebras. The representations considered are those from the category O introduced by Bernstein, Gelfand and Gelfand. In Chapter 19 the irreducible modules in this category are classified, and their characters are obtained in Kac' character formula, a generalisation to the Kac–Moody situation of Weyl's character formula. In Chapter 20 the representations of affine Kac–Moody algebras are discussed. The remarkable identities of I. G. Macdonald are obtained by specialising the denominator of Kac' character formula, interpreted in two different ways; one as an infinite sum and the other as an infinite product. The phenomenon of strings of weights with non-decreasing multiplicities is investigated inside an irreducible module for an affine algebra.

Many of the applications of the representation theory of affine Kac–Moody algebras use the theory of vertex operators. This theory lies beyond the scope of the present volume. However, we have introduced the idea of a vertex operator in Chapter 20 with the aim of encouraging the reader to explore the subject further.

A theory of generalised Kac–Moody algebras was introduced in 1988 by R. Borcherds. These Lie algebras were introduced as part of Borcherds' proof of the Conway–Norton conjectures on the representation theory of the Monster simple group. They are now frequently called Borcherds algebras. In Chapter 21 we have given an account of Borcherds algebras, including the

Preface

definition and statements of the main results concerning their structure and representation theory, but detailed proofs are not given. Many of the results on Borcherds algebras are quite similar to those for Kac–Moody algebras, but there are examples of Borcherds algebras which are quite different from Kac–Moody algebras. The best known such example is the Monster Lie algebra, which we describe in the final section.

We conclude with an appendix containing one section for each of the algebras of finite and affine types, in which the most important pieces of information about the algebra concerned are collected.

I would like to express my thanks to Roger Astley of Cambridge University Press for his encouragement to complete the half finished manuscript of this book. This was eventually achieved after I had reached the status of Emeritus Professor, and therefore had more time to devote to it. I would also like to thank my colleague Bruce Westbury for the sustained interest he has shown in this work.

xvii