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Basic concepts

1.1 Elementary properties of Lie algebras
A Lie algebra is a vector space L over a field k on which a multiplication
LxL—L
(x,y) = [x]
is defined satisfying the following axioms:

(i) (x,y)— [xy] is linear in x and in y;
(ii) [xx]=0 for all xe L;
(i) [[xy)z]+[[yz]x]+[[zx]y]=0 for all x, y,z€ L.

Axiom (iii) is called the Jacobi identity.
Proposition 1.1 [yx]=—[xy] forall x,y€L.

Proof. Since [x+y, x+y] =0 we have [xx]+ [xy]+ [yx] + [yy] =0. It follows
that [xy] 4+ [yx] =0, that is [yx] =—[xy]. O

Proposition 1.1 asserts that multiplication in a Lie algebra is anticommutative.

Now let H, K be subspaces of a Lie algebra L. Then [HK] is defined as the
subspace spanned by all products [xy] with x € H and y € K. Each element of
[HK] is a sum

o]+ +[xy,]

with x;,€e H, y;, € K.

Proposition 1.2 [HK]=[KH] for all subspaces H, K of L.
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2 Basic concepts

Proof. Let xe H, ye K. Then [xy] =[—y, x] € [KH]. This shows that [HK| C
[KH]. Similarly we have [KH] C [HK] and so we have equality. O

Proposition 1.2 asserts that multiplication of subspaces in a Lie algebra is
commutative.

Example 1.3 Let A be an associative algebra over k. Thus we have a map
AxA— A
(x,y) = xy
satisfying the associative law
(xy)z=x(yz) for all x, y,z€ A.
Then A can be made into a Lie algebra by defining the Lie product [xy] by
[xy] =xy—yx

We verify the Lie algebra axioms. Product [xy] is clearly linear in x and
in y. It is also clear that [xx]=0. Finally we check the Jacobi identity.
We have

[[xy]z] = (xy —yx)z —z(xy —yx)
= XyZ — yXZ —ZXy+ZyX.
We have similar expressions for [[yz]x] and [[zx]y]. Hence
[[xy)z] + [[yz]x]) + [[zx]y] =xyz — yxz—zxy +zyx + yzx — 2yX — XY2Z
+xzy+zxy—xzy —yzx+yxz=0. ]

The Lie algebra obtained from the associative algebra A in this way will be
denoted by [A].

Now let L be a Lie algebra over k. A subset H of L is called a subalgebra
of L if H is a subspace of L and [HH]|C H. Thus H is itself a Lie algebra
under the same operations as L.

A subset [ of L is called an ideal of L if [ is a subspace of L and [IL]C 1.
We observe that the latter condition is equivalent to [LI] C I. Thus there is no
distinction between left ideals and right ideals in the theory of Lie algebras.
Every ideal is two-sided.

Proposition 1.4 (i) If H, K are subalgebras of L so is HNK.
(ii) If H, K are ideals of L so is HNK.
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(iii) If H is an ideal of L and K a subalgebra of L then H+K is a sub-
algebra of L.
(iv) If H, K are ideals of L then H+K is an ideal of L.

Proof. (i) HNK is a subspace of L and [HNK, HNK]|C[HH]N[KK]C

HNK. Thus HNK is a subalgebra.

(ii) This time we have [HNK, L] C[HLIN[KL]C HNK. Thus HNK is an
ideal of L.

(iii) H+K is asubspace of L. Also [H+ K, H+ K| C [HH]+[HK]+[KH]+
[KK]C H+K, since [HH|C H,[HK]|C H, [KK]C K. Thus H+K is a

subalgebra.
(iv) This time we have [H+K, L] C[HL]+[KL]C H+K. Thus H+K is
an ideal of L. U

We next introduce the idea of a factor algebra. Let I be an ideal of a Lie
algebra L. Then I is in particular a subspace of L and so we can form the
factor space L/I whose elements are the cosets I+ x for xe L. I+ x is the
subset of L consisting of all elements y+x for ye .

Proposition 1.5 Let I be an ideal of L. Then the factor space L/I can be
made into a Lie algebra by defining

[[+x,I+y]=I+][xy] forall x,yeL.

Proof. We must first show that this definition is unambiguous, that is if
I+x=1+x"and I+y=1+Y then I+[xy]=1+[x"y].
Now [+ x =1+ x" implies that x =x"+1i, for some i, € I. Similarly / +y=
I+y implies y=y'+i, for some i, € I. Thus
I+ [xy]=1+[x'+i), Y +1,]
=140y ]+ X ]+ [ L]+ [xy]
=1+[x'y]

since [i,y'], [x'i,], [{;i,] all lie in I. Thus our multiplication is well defined.
We also have

[[+x,I+x]=1+[xx]=1

and the Jacobi identity in L/I clearly follows from the Jacobi identity in L.
O
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Now suppose we have two Lie algebras L, L, over k. Amap 6:L, — L,
is called a homomorphism of Lie algebras if 6 is linear and

O[xy] =[6x, 6y] for all x,yeL,.

The map 0:L, — L, is called an isomorphism of Lie algebras if 6 is a
bijective homomorphism of Lie algebras. The Lie algebras L,, L, are said to
be isomorphic if there exists an isomorphism 6: L, — L,.

Proposition 1.6 Let 6:L, — L, be a homomorphism of Lie algebras. Then
the image of 0 is a subalgebra of L,, the kernel of 0 is an ideal of L, and
L, /ker 0 is isomorphic to im 0.

Proof. im 6 is a subspace of L,. Moreover for x, y in L, we have

[0(x), 6(y)] = 0[xy] €im 6.

Hence im 6 is a subalgebra of L,.
Now ker 0 is a subspace of L,. Let xeker and ye L,. Then

Olxy]=[6(x), 6(»)] =10, 6(y)]=0.

Hence [xy] e ker 6 and so ker 6 is an ideal of L,.
Now let x, y € L,. We consider when 6(x) is equal to 6(y). We have

0(x)=0(y) & 0(x—y)=0&x—yeckerf
< ker+x=ker6+y.

This shows that there is a bijective map 6(x) — ker 8+ x between im # and
L,/ker 6. We show this bijection is an isomorphism of Lie algebras. It is
clearly linear. Moreover given x, y, z € L, we have

[0(x), 6(y)] = 6(z) < O[xy] =0(z)
< ker 6+ [xy]=ker6+z
& [ker 0+ x, ker 0+ y] =ker 0+z.

Thus the bijection preserves Lie multiplication, so is an isomorphism of Lie
algebras. Ul

Proposition 1.7 Let I be an ideal of L and H a subalgebra of L. Then
(1) I is an ideal of 1+ H.

(ii) INH is an ideal of H.

(iii) (I+ H)/I is isomorphic to H/(IN H).
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Proof. We recall from Proposition 1.4 that /N H and I+ H are subalgebras.
We have [I, I+ H]|C[IL]C1, thus [ is an ideal of I+ H. Also [INH, H]C
[IHIN[HH]CINH, thus INH is an ideal of H.

Let : H— (I+ H)/I be defined by 6(x) =1+ x. This is clearly a linear
map, and is also evidently a homomorphism of Lie algebras. It is surjective
since each element of (/+ H)/I has form I+ x for some x € H. Finally its
kernel is the set of x € H for which I +x=1, thatis INH. Thus (I+ H)/I is
isomorphic to H/(I N H) by Proposition 1.6. Ul

1.2 Representations and modules

Let M, (k) be the associative algebra of all n x n matrices over the field k and
let [M, (k)] be the corresponding Lie algebra. This is often called the general
linear Lie algebra of degree n over k and we write

al,, (k) =[M, (k)].
We have dimgl,, (k) = n?.

A representation of a Lie algebra L over k is a homomorphism of Lie
algebras

p:L—gl,(k)

for some n, and p is called a representation of degree n. Two representations
p, p’ of degree n are called equivalent if there exists a non-singular n X n
matrix 7 such that

pP(xX)=T""'p(x)T forall xe L.
A left L-module is a vector space V over k together with a multiplication
LxV—>YV
(x,v) = xv
satisfying the axioms:

(1) (x,v)— xv is linear in x and in v;
(ii) [xy]v=x(yv) —y(xv) for all x,yeL and ve V.

Suppose V is a finite dimensional L-module. Let e, ... , e, be a basis of
V. Let

xej:Zpij(x)ei
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6 Basic concepts

with p;;(x) €k and let p(x) = (p;;(x)). Then p is a representation of L. For
we have

[x)’]ej = x(yej) _)’(xej)

=X (Zpkj(y)ek) -y <Z pkj(x)ek)
k k
= Zpkj(y)xek - Zpkj(x)yek
k k

= Zpkj(y) (Z Pik (x)ei> - Zpkj(x) (Z pik(y)et)
k i k i

= Z (Z(pik(x)pkj(y) _Pik(Y)ij(x))) é;
=2_(p®)p() —p(»)P(x);e;-

Thus p[xy]=p(x)p(y) —p(y)p(x) =[p(x), p(y)] and p is a representation
of L.

Suppose now we take a second basis fi, ..., f, of V. Let p’ be the repre-
sentation of L obtained from this basis. Then p’ is equivalent to p. For there
exists a non-singular n x n matrix 7 such that

fi= Z Tije:.
Thus we have |
xf;= ij Ty jxe, = ij T (Xi:pik(x)e,) = Z (ij p,.k(x)Tkj> e
On the other hand

It follows that p(x)T = Tp'(x), that is p'(x) =T ' p(x)T for all x € L. Hence
the representation p’ is equivalent to p. |

Example 1.8 L is itself a left L-module.
The left action of L on L is defined as x-y=[xy]. Then we have

[[xylz] = [x[yz]] — [y[xz]]
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which is a consequence of the Jacobi identity. This shows that L is a left
L-module. This is called the adjoint module. We define ad x: L — L by

ad x-y=[xy] for x,yeL.
Then we have
ad[xy]=ad x ad y—ad y ad x. OJ

Now let V be a left L-module, U be a subspace of V and H a subspace
of L. We define HU to be the subspace of V spanned by all elements of the
form xu for xe H, ue U.

A submodule of V is a subspace U of V such that LU C U. In particular
V is a submodule of V and the zero subspace O = {0} is a submodule of V.
A proper submodule of V is a submodule distinct from V and O.

An L-module V is called irreducible if it has no proper submodules. V is
called completely reducible if it is a direct sum of irreducible submodules.
V is called indecomposable if V cannot be written as a direct sum of two
proper submodules. Of course every irreducible L-module is indecomposable,
but the converse need not be true.

We may also define right L-modules, but we shall mainly work with left
L-modules, and L-modules will be assumed to be left L-modules unless
otherwise stated.

1.3 Abelian, nilpotent and soluble Lie algebras

A Lie algebra L is abelian if [LL]= 0. Thus [xy] =0 for all x, ye L when
L is abelian.
Given any Lie algebra L we define the powers of L by

L'=L, L"™'=[L"L]  for n>1.

Thus L is abelian if and only if L>= 0.

Proposition 1.9 L" is an ideal of L. Also
L=L'D2L*>L>---.
Proof. We first observe that if I, J are ideals of L then [IJ] is also an ideal

of L.Forlet xel, yeJ, ze L. Then
[[xy]z] = [x[yz]] - [y[xz]] € [1J].
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It follows that L" is an ideal of L for each n > 0. Thus we have
L' =[L"L]cL". ]

A Lie algebra L is called nilpotent if L" = O for some n> 1. Thus every
abelian Lie algebra is nilpotent. It is clear that every subalgebra and every
factor algebra of a nilpotent Lie algebra are nilpotent.

We now consider a different kind of powers of L. We define

LO=Lr, LWD=[L™ LW]  for n>0.

Proposition 1.10 L™ is an ideal of L. Also

L=LO>51WOS51@ 5.

Proof. L™ is an ideal of L since the product of two ideals is an ideal. Also
Lt — [L("), L(n)] cL®™, 0

A Lie algebra L is called soluble if L™ = O for some n > 0.

Proposition 1.11 (a) [L"L"]C L™*" for all m,n>1. (b) L™ C L* for all
n>0. (c) Every nilpotent Lie algebra is soluble.

Proof. (a). We use induction on n. The result is clear if n=1. Suppose it is
true for n=r. Then

[L"L™*"] = [L"[L"L]] = [[L"L]L"]
C[[LL™IL]+[[L"L L] by the Jacobi identity
C L™ L +([[L"L"]L]
c Lttt by inductive hypothesis.

Thus the result holds for n=r+1, so for all n.
(b). We again use induction on n. The result is clear if n=1. Suppose it is
true for n=r. Then

LU =[LOLO) LY L¥ | c L*

by (a). Thus the result holds for n=r+1, so for all n.
(c). Suppose L is nilpotent. Then L?>" =0 for n sufficiently large. Hence
L™ =0 by (b) and so L is soluble. O
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1.3 Abelian, nilpotent and soluble Lie algebras 9

It is clear that every subalgebra and every factor algebra of a soluble Lie
algebra are soluble.

Proposition 1.12 Suppose I is an ideal of L and both I and L/I are soluble.
Then L is soluble.

Proof. Since L/I is soluble we have (L/I)"™ = O for some n. This implies
L™ . Since I is soluble we have 1™ = O for some m. Hence

Lnm — (L(n))(m) cI™=0

and so L is soluble. ]

Proposition 1.13 Every finite dimensional Lie algebra L contains a unique
maximal soluble ideal R. Also L/R contains no non-zero soluble ideal.

Proof. Let I, J be soluble ideals of L. Then I+ J is also an ideal of L and
(I+J)/I is isomorphic to J/(INJ) by Proposition 1.7. Now J is soluble,
thus J/(INJ) is soluble and so (I +J)/I is soluble. Since I is soluble we see
that 7+ J is soluble by Proposition 1.12. Thus the sum of two soluble ideals
of L is a soluble ideal. It follows that L has a unique maximal soluble

ideal R.
If I/R is a soluble ideal of L/R then I is a soluble ideal of L by Proposi-
tion 1.12. Hence /=R and I/R=0. |

The ideal R is called the soluble radical of L. A Lie algebra L is called
semisimple if R= 0. Thus L is semisimple if and only if L has no non-zero
soluble ideal.

L is called simple if L has no proper ideal, that is no ideal other than L
and O.

Suppose L is a Lie algebra of dimension 1 over k. Then L has a basis {x}
with 1 element. Since [xx] =0 we have L?> = O. Thus L is abelian. We see that
any two 1-dimensional Lie algebras over k are isomorphic. Of course any such
Lie algebra is simple, because L has no proper subspaces. The 1-dimensional
Lie algebra is called the trivial simple Lie algebra. A non-trivial simple Lie
algebra is a simple Lie algebra L with dim L > 1.

Proposition 1.14 Each non-trivial simple Lie algebra is semisimple.

Proof. Suppose L is simple but not semisimple. Then the soluble radical R
satisfies R # O. Since R is an ideal of L this implies R= L. Thus L is soluble.
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Hence L™ = O for some n > 0. This implies that L") # L since L") = L would
imply L™ =L for all n. Now L is an ideal of L, hence L") = O since L is
simple. Thus [LL]= O. But then every subspace of L is an ideal of L. Since
L is simple L has no proper subspaces, so dim L = 1. Thus the only simple
Lie algebra which is not semisimple is the trivial simple Lie algebra. Ul
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