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Basic concepts

1.1 Elementary properties of Lie algebras

A Lie algebra is a vector space L over a field k on which a multiplication

L×L → L

�x� y� → �xy�

is defined satisfying the following axioms:

(i) �x� y�→ �xy� is linear in x and in y;
(ii) �xx�=0 for all x∈L;

(iii) ��xy�z�+ ��yz�x�+ ��zx�y�=0 for all x� y� z∈L.

Axiom (iii) is called the Jacobi identity.

Proposition 1.1 �yx�=−�xy� for all x� y ∈L.

Proof. Since �x+y� x+y�=0 we have �xx�+ �xy�+ �yx�+ �yy�=0. It follows
that �xy�+ �yx�=0, that is �yx�=−�xy�.

Proposition 1.1 asserts that multiplication in a Lie algebra is anticommutative.
Now let H , K be subspaces of a Lie algebra L. Then �HK� is defined as the

subspace spanned by all products �xy� with x∈H and y ∈K. Each element of
�HK� is a sum

�x1y1�+· · ·+ �xryr�

with xi ∈H , yi ∈K.

Proposition 1.2 �HK�= �KH� for all subspaces H�K of L.
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2 Basic concepts

Proof. Let x∈H , y ∈K. Then �xy�= �−y� x�∈ �KH�. This shows that �HK�⊂
�KH�. Similarly we have �KH�⊂ �HK� and so we have equality.

Proposition 1.2 asserts that multiplication of subspaces in a Lie algebra is
commutative.

Example 1.3 Let A be an associative algebra over k. Thus we have a map

A×A → A

�x� y� → xy

satisfying the associative law

�xy�z=x�yz� for all x� y� z∈A�

Then A can be made into a Lie algebra by defining the Lie product �xy� by

�xy�=xy−yx

We verify the Lie algebra axioms. Product �xy� is clearly linear in x and
in y. It is also clear that �xx�=0. Finally we check the Jacobi identity.
We have

��xy�z� = �xy−yx�z−z�xy−yx�

= xyz−yxz−zxy+zyx�

We have similar expressions for ��yz�x� and ��zx�y�. Hence

��xy�z�+ ��yz�x�+ ��zx�y� =xyz−yxz−zxy+zyx+yzx−zyx−xyz

+xzy+zxy−xzy−yzx+yxz=0�

The Lie algebra obtained from the associative algebra A in this way will be
denoted by �A�.

Now let L be a Lie algebra over k. A subset H of L is called a subalgebra
of L if H is a subspace of L and �HH�⊂H . Thus H is itself a Lie algebra
under the same operations as L.

A subset I of L is called an ideal of L if I is a subspace of L and �IL�⊂ I .
We observe that the latter condition is equivalent to �LI�⊂ I . Thus there is no
distinction between left ideals and right ideals in the theory of Lie algebras.
Every ideal is two-sided.

Proposition 1.4 (i) If H , K are subalgebras of L so is H ∩K.
(ii) If H , K are ideals of L so is H ∩K.
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1.1 Elementary properties of Lie algebras 3

(iii) If H is an ideal of L and K a subalgebra of L then H +K is a sub-
algebra of L.

(iv) If H , K are ideals of L then H +K is an ideal of L.

Proof. (i) H ∩K is a subspace of L and �H ∩K�H ∩K�⊂ �HH�∩ �KK�⊂
H ∩K. Thus H ∩K is a subalgebra.
(ii) This time we have �H ∩K�L�⊂ �HL�∩ �KL�⊂H ∩K. Thus H ∩K is an

ideal of L.
(iii) H +K is a subspace of L. Also �H +K�H +K�⊂ �HH�+ �HK�+ �KH�+

�KK�⊂H +K, since �HH�⊂H� �HK�⊂H� �KK�⊂K. Thus H +K is a
subalgebra.

(iv) This time we have �H +K�L�⊂ �HL�+ �KL�⊂H +K. Thus H +K is
an ideal of L.

We next introduce the idea of a factor algebra. Let I be an ideal of a Lie
algebra L. Then I is in particular a subspace of L and so we can form the
factor space L/I whose elements are the cosets I +x for x∈L. I +x is the
subset of L consisting of all elements y+x for y ∈ I .

Proposition 1.5 Let I be an ideal of L. Then the factor space L/I can be
made into a Lie algebra by defining

�I +x� I +y�= I + �xy� for all x� y ∈L�

Proof. We must first show that this definition is unambiguous, that is if
I +x= I +x′ and I +y = I +y′ then I + �xy�= I + �x′y′�.

Now I +x= I +x′ implies that x=x′ + i1 for some i1 ∈ I . Similarly I +y =
I +y′ implies y =y′ + i2 for some i2 ∈ I . Thus

I + �xy�= I + �x′ + i1� y′ + i2�

= I + �i1y
′�+ �x′i2�+ �i1i2�+ �x′y′�

= I + �x′y′�

since �i1y
′�� �x′i2�� �i1i2� all lie in I . Thus our multiplication is well defined.

We also have

�I +x� I +x�= I + �xx�= I

and the Jacobi identity in L/I clearly follows from the Jacobi identity in L.
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4 Basic concepts

Now suppose we have two Lie algebras L1, L2 over k. A map � 	L1 →L2

is called a homomorphism of Lie algebras if � is linear and

��xy�= ��x� �y� for all x� y ∈L1�

The map � 	L1 →L2 is called an isomorphism of Lie algebras if � is a
bijective homomorphism of Lie algebras. The Lie algebras L1�L2 are said to
be isomorphic if there exists an isomorphism � 	L1 →L2.

Proposition 1.6 Let � 	L1 →L2 be a homomorphism of Lie algebras. Then
the image of � is a subalgebra of L2, the kernel of � is an ideal of L1 and
L1/ker � is isomorphic to im �.

Proof. im � is a subspace of L2. Moreover for x, y in L1 we have

���x�� ��y��=��xy�∈ im ��

Hence im � is a subalgebra of L2.
Now ker � is a subspace of L1. Let x∈ker � and y ∈L1. Then

��xy�= ���x�� ��y��= �0� ��y��=0�

Hence �xy�∈ker � and so ker � is an ideal of L1.
Now let x� y ∈L1. We consider when ��x� is equal to ��y�. We have

��x�=��y� ⇔��x−y�=0⇔x−y ∈ker �

⇔ker �+x=ker �+y�

This shows that there is a bijective map ��x�→ker �+x between im � and
L1/ ker �. We show this bijection is an isomorphism of Lie algebras. It is
clearly linear. Moreover given x� y� z∈L1 we have

���x�� ��y��=��z�⇔��xy�=��z�

⇔ker �+ �xy�=ker �+z

⇔ �ker �+x� ker �+y�=ker �+z�

Thus the bijection preserves Lie multiplication, so is an isomorphism of Lie
algebras.

Proposition 1.7 Let I be an ideal of L and H a subalgebra of L. Then

(i) I is an ideal of I +H .
(ii) I ∩H is an ideal of H .

(iii) �I +H�/I is isomorphic to H/�I ∩H�.
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1.2 Representations and modules 5

Proof. We recall from Proposition 1.4 that I ∩H and I +H are subalgebras.
We have �I� I +H�⊂ �IL�⊂ I , thus I is an ideal of I +H . Also �I ∩H�H�⊂
�IH�∩ �HH�⊂ I ∩H , thus I ∩H is an ideal of H .

Let � 	H → �I +H�/I be defined by ��x�= I +x. This is clearly a linear
map, and is also evidently a homomorphism of Lie algebras. It is surjective
since each element of �I +H�/I has form I +x for some x∈H . Finally its
kernel is the set of x∈H for which I +x= I , that is I ∩H . Thus �I +H�/I is
isomorphic to H/�I ∩H� by Proposition 1.6.

1.2 Representations and modules

Let Mn�k� be the associative algebra of all n×n matrices over the field k and
let �Mn�k�� be the corresponding Lie algebra. This is often called the general
linear Lie algebra of degree n over k and we write

��n�k�= �Mn�k���

We have dim ��n�k�=n2.
A representation of a Lie algebra L over k is a homomorphism of Lie

algebras


 	L→��n�k�

for some n, and 
 is called a representation of degree n. Two representations

�
′ of degree n are called equivalent if there exists a non-singular n×n

matrix T such that


′�x�=T−1
�x�T forall x∈L�

A left L-module is a vector space V over k together with a multiplication

L×V → V

�x� v� → xv

satisfying the axioms:

(i) �x� v�→xv is linear in x and in v;
(ii) �xy�v=x�yv�−y�xv� for all x� y ∈L and v∈V .

Suppose V is a finite dimensional L-module. Let e1� � � � � en be a basis of
V . Let

xej =∑
i


ij�x�ei
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6 Basic concepts

with 
ij�x�∈k and let 
�x�= �
ij�x��. Then 
 is a representation of L. For
we have

�xy�ej = x�yej�−y�xej�

= x

(
∑

k


kj�y�ek

)

−y

(
∑

k


kj�x�ek

)

=∑

k


kj�y�xek −∑
k


kj�x�yek

=∑

k


kj�y�

(
∑

i


ik�x�ei

)

−∑
k


kj�x�

(
∑

i


ik�y�ei

)

=∑

i

(
∑

k

�
ik�x�
kj�y�−
ik�y�
kj�x��

)

ei

=∑

i

�
�x�
�y�−
�y�
�x��ij ei�

Thus 
�xy�=
�x�
�y�−
�y�
�x�= �
�x��
�y�� and 
 is a representation
of L.

Suppose now we take a second basis f1� � � � � fn of V . Let 
′ be the repre-
sentation of L obtained from this basis. Then 
′ is equivalent to 
. For there
exists a non-singular n×n matrix T such that

fj =∑
i

Tijei�

Thus we have

xfj =∑
k

Tkjxek =∑
k

Tkj

(
∑

i


ik�x�ei

)

=∑
i

(
∑

k


ik�x�Tkj

)

ei�

On the other hand

xfj =∑
k


′
kj�x�fk =∑

k


′
kj�x�

(
∑

i

Tikei

)

=∑
i

(
∑

k

Tik

′
kj�x�

)

ei�

It follows that 
�x�T =T
′�x�, that is 
′�x�=T−1
�x�T for all x∈L. Hence
the representation 
′ is equivalent to 
.

Example 1.8 L is itself a left L-module.
The left action of L on L is defined as x ·y = �xy�. Then we have

��xy�z�= �x�yz��− �y�xz��
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1.3 Abelian, nilpotent and soluble Lie algebras 7

which is a consequence of the Jacobi identity. This shows that L is a left
L-module. This is called the adjoint module. We define ad x 	L→L by

ad x ·y = �xy� for x� y ∈L�

Then we have

ad�xy�= ad x ad y−ad y ad x�

Now let V be a left L-module, U be a subspace of V and H a subspace
of L. We define HU to be the subspace of V spanned by all elements of the
form xu for x∈H , u∈U .

A submodule of V is a subspace U of V such that LU ⊂U . In particular
V is a submodule of V and the zero subspace O = �0� is a submodule of V .
A proper submodule of V is a submodule distinct from V and O.

An L-module V is called irreducible if it has no proper submodules. V is
called completely reducible if it is a direct sum of irreducible submodules.
V is called indecomposable if V cannot be written as a direct sum of two
proper submodules. Of course every irreducible L-module is indecomposable,
but the converse need not be true.

We may also define right L-modules, but we shall mainly work with left
L-modules, and L-modules will be assumed to be left L-modules unless
otherwise stated.

1.3 Abelian, nilpotent and soluble Lie algebras

A Lie algebra L is abelian if �LL�=O. Thus �xy�=0 for all x� y ∈L when
L is abelian.

Given any Lie algebra L we define the powers of L by

L1 =L� Ln+1 = �LnL� for n≥1�

Thus L is abelian if and only if L2 =O.

Proposition 1.9 Ln is an ideal of L. Also

L=L1 ⊃L2 ⊃L3 ⊃· · · �

Proof. We first observe that if I , J are ideals of L then �IJ� is also an ideal
of L. For let x∈ I , y ∈ J , z∈L. Then

��xy�z�= �x�yz��− �y�xz��∈ �IJ��
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8 Basic concepts

It follows that Ln is an ideal of L for each n> 0. Thus we have

Ln+1 = �LnL�⊂Ln�

A Lie algebra L is called nilpotent if Ln =O for some n≥1. Thus every
abelian Lie algebra is nilpotent. It is clear that every subalgebra and every
factor algebra of a nilpotent Lie algebra are nilpotent.

We now consider a different kind of powers of L. We define

L�0� =L� L�n+1� = �L�n��L�n�� for n≥0�

Proposition 1.10 L�n� is an ideal of L. Also

L=L�0� ⊃L�1� ⊃L�2� ⊃· · · �

Proof. L�n� is an ideal of L since the product of two ideals is an ideal. Also

L�n+1� = �L�n��L�n��⊂L�n��

A Lie algebra L is called soluble if L�n� =O for some n≥0.

Proposition 1.11 (a) �LmLn�⊂Lm+n for all m�n≥1. (b) L�n� ⊂L2n
for all

n≥0. (c) Every nilpotent Lie algebra is soluble.

Proof. (a). We use induction on n. The result is clear if n=1. Suppose it is
true for n= r. Then

�LmLr+1� = �Lm�LrL��= ��LrL�Lm�

⊂ ��LLm�Lr�+ ��LmLr�L� by the Jacobi identity

⊂ �Lm+1Lr�+ ��LmLr�L�

⊂ Lm+r+1 by inductive hypothesis�

Thus the result holds for n= r +1, so for all n.
(b). We again use induction on n. The result is clear if n=1. Suppose it is

true for n= r. Then

L�r+1� = �L�r�L�r��⊂ �L2r

L2r

�⊂L2r+1

by (a). Thus the result holds for n= r +1, so for all n.
(c). Suppose L is nilpotent. Then L2n =O for n sufficiently large. Hence

L�n� =O by (b) and so L is soluble.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-85138-1 - Lie Algebras of Finite and Affine Type
R. W. Carter
Excerpt
More information

http://www.cambridge.org/9780521851381
http://www.cambridge.org
http://www.cambridge.org


1.3 Abelian, nilpotent and soluble Lie algebras 9

It is clear that every subalgebra and every factor algebra of a soluble Lie
algebra are soluble.

Proposition 1.12 Suppose I is an ideal of L and both I and L/I are soluble.
Then L is soluble.

Proof. Since L/I is soluble we have �L/I��n� =O for some n. This implies
L�n� ⊂ I . Since I is soluble we have I�m� =O for some m. Hence

L�n+m� = �L�n���m� ⊂ I�m� =O

and so L is soluble.

Proposition 1.13 Every finite dimensional Lie algebra L contains a unique
maximal soluble ideal R. Also L/R contains no non-zero soluble ideal.

Proof. Let I , J be soluble ideals of L. Then I +J is also an ideal of L and
�I +J �/I is isomorphic to J/�I ∩J � by Proposition 1.7. Now J is soluble,
thus J/�I ∩J � is soluble and so �I +J �/I is soluble. Since I is soluble we see
that I +J is soluble by Proposition 1.12. Thus the sum of two soluble ideals
of L is a soluble ideal. It follows that L has a unique maximal soluble
ideal R.

If I/R is a soluble ideal of L/R then I is a soluble ideal of L by Proposi-
tion 1.12. Hence I =R and I/R=O.

The ideal R is called the soluble radical of L. A Lie algebra L is called
semisimple if R=O. Thus L is semisimple if and only if L has no non-zero
soluble ideal.

L is called simple if L has no proper ideal, that is no ideal other than L

and O.
Suppose L is a Lie algebra of dimension 1 over k. Then L has a basis �x�

with 1 element. Since �xx�=0 we have L2 =O. Thus L is abelian. We see that
any two 1-dimensional Lie algebras over k are isomorphic. Of course any such
Lie algebra is simple, because L has no proper subspaces. The 1-dimensional
Lie algebra is called the trivial simple Lie algebra. A non-trivial simple Lie
algebra is a simple Lie algebra L with dim L> 1.

Proposition 1.14 Each non-trivial simple Lie algebra is semisimple.

Proof. Suppose L is simple but not semisimple. Then the soluble radical R

satisfies R 
=O. Since R is an ideal of L this implies R=L. Thus L is soluble.
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10 Basic concepts

Hence L�n� =O for some n≥0. This implies that L�1� 
=L since L�1� =L would
imply L�n� =L for all n. Now L�1� is an ideal of L, hence L�1� =O since L is
simple. Thus �LL�=O. But then every subspace of L is an ideal of L. Since
L is simple L has no proper subspaces, so dim L=1. Thus the only simple
Lie algebra which is not semisimple is the trivial simple Lie algebra.
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