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Introduction

There is a revolution brewing in ecology. Granted, it is a gentle and

slow revolution, but there is growing dissatisfaction with the statistical

methods that have been most commonly taught and used in ecology

(Hilborn and Mangel, 1997; Wade, 2000; Clark, 2005).1 One aspect of

this revolution is the increasing interest in Bayesian statistics (Fig. 1.1).

This book aims to foster the revolution by making Bayesian statistics

more accessible to every ecologist.

Ecology is the scientific study of the distribution and abundance

of biological organisms, and how their interactions with each other and

the environment influence their distribution and abundance (Begon et al.,

2005). The discipline depends on the measurement of variables and

analysis of relationships between them. Because of the size and com-

plexity of ecological systems, ecological data are almost invariably subject

to error. Ecologists use statistical methods to distinguish true responses

from error. Statistical methods make the interpretation of data trans-

parent and repeatable, so they play an extremely important role in

ecology.

The Bayesian approach is one of a number of ways in which ecologists

use data to make inferences about nature. The different approaches

are underpinned by fundamentally different philosophies and logic. The

appropriateness of different statistical approaches has been fiercely

debated in numerous disciplines but ecologists are only now becoming

aware of this controversy. This occurs at least in part because the

majority of statistical books read by ecologists propound conventional

1 The conventional statistical methods are known as frequentist statistics and include null
hypothesis significance testing (NHST) and construction of confidence intervals. NHST
attracts the most criticism. See Chapter 2 for more details of these methods.
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statistics, ignore criticisms of these methods and do not acknowledge

that there are alternatives (Fowler et al., 1998; Sokal and Rohlf, 1995;

Underwood, 1997; Zar, 1999). Those that do address the controversy

usually aim to change the status quo (Hilborn and Mangel, 1997;

Burnham and Anderson, 2002), although there are exceptions (Quinn and

Keough, 2002; Gotelli and Ellison, 2004).

The Bayesian approach is used relatively rarely (Fig. 1.1), so why

should it interest ecologists? There are several reasons but two are

particularly relevant ones. Firstly, Bayesian methods are fully con-

sistent with mathematical logic, while conventional statistics are only

logical when making probabilistic statements about data, not hypo-

theses (Cox, 1946; Berger and Berry, 1988; Jaynes, 2003). Bayesian

methods can be used to make probabilistic predictions about the

state of the world, while conventional statistics are restricted to

statements about long-run averages obtained from hypothetical replicates

of sampled data.

Secondly, relevant prior information can be incorporated naturally

into Bayesian analyses by specifying the appropriate prior proba-

bilities for the parameters. In contrast, conventional statistical

methods are forced to ignore any relevant information other than that

contained in the data. Difficulties with Bayesian methods and

other benefits are discussed more fully in Chapter 2 and throughout this

book.

Bayesian statistics are founded on the work of the Reverend

Thomas Bayes, who lived and died in eighteenth century England

(Box 1.1). Bayesian methods explicitly recognize and combine four

Fig. 1.1 The proportion of articles in the journals Ecology and Conservation

Biology that refer to ‘Bayes’ or ‘Bayesian’.
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components of knowledge. Prior knowledge and new data are combined

using a model to produce posterior knowledge.2 These four components

may be represented as:

priorþ data ��!model
posterior

It is common in everyday life to combine prior information and

new data to update knowledge. We might hear a weather forecast that the

chance of rain is small. However, if we stepped outside and saw dark

2 Prior and posterior refer to before and after considering the data.

Box 1.1
The Reverend Thomas Bayes, FRS

Very little is known about Thomas Bayes. The portrait above

(O’Donnell, 1936) may be of Bayes, but no other portraits

are known (Bellhouse, 2004). Even the year (1701 or 1702) and

place of his birth (London or Hertfordshire, England) are

uncertain (Dale, 1999). There are few records to indicate the nature

of his early schooling, but he is known to have studied divinity

and mathematics at the University of Edinburgh. He was ordained

as a Presbyterian minister by 1728. He was elected as a Fellow of

the Royal Society in 1742 but it was not until after his death in

1761 that his most famous contribution, his essay in the

Philosophical Transactions of the Royal Society of London,

was published (Bayes, 1763). In that essay, Bayes described his

theory of probability and presented what is now known as

Bayes’ rule (or Bayes’ theorem), establishing the basis of

Bayesian statistics.
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clouds looming above us, most people would think that the risk

of rain was higher than previously believed. In contrast, our expecta-

tion of a fine day would be reinforced by a sunny sky. Thus, both the

prior information (the weather forecast) and the data (the current state of

the weather) influence our newly updated belief in the prospects of rain.

Our updated belief in the chance of rain (the posterior) will depend

on the relative weight we place on the prior information compared to

the new data and the magnitude of the difference between the two

pieces of information. In this case the ‘model’ is contained within our

understanding of the weather. Our thought processes combine the prior

information, data, and model to update our belief that it will rain.

Bayesian statistics provide a logically consistent, objective and repeatable

method for combining prior information with data to produce the

posterior, rather than the subjective judgement that most people would

use when stepping outside.

Before considering the benefits and limitations of Bayesian methods

and its alternatives in Chapter 2, I will illustrate the use of the different

statistical approaches with two examples. These highlight how Bayesian

methods provide answers to the kinds of questions that ecologists ask,

and how they can usefully incorporate prior information.

Example 1: Logic in determining the presence or absence

of a species

Consider an ecologist who surveys ponds in a city for frogs. On her

first visit to a pond, she searches the edge and listens for frog calls

over a 20-minute period. The southern brown tree frog (Litoria ewingii)

is the most common species in her study area, but it is not found on

this particular visit (Fig. 1.2). However, the researcher would not be

particularly surprised that the species was not detected because she knows

from experience that when surveying ponds, southern brown tree frogs

are detected on only 80% of visits when they are in fact present. Given

this information, what can she conclude about whether the southern

brown tree frog is present at the site or not?

The question about the presence of a species is a simple example of

those asked by ecologists. We assume that there is a particular true state

of nature and we hope to use scientific methods to determine a reasonable

approximation of the truth. However, the probability that a species is
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present at a site is rarely calculated by ecologists, although it should be a

fundamental part of any field study that depends on knowing where a

species does and does not occur. This probability is not calculated partly

because the statistical methods used by most ecologists are not well-suited

to this question. I will examine three different approaches to answering

this question and demonstrate that a satisfactory answer requires

Bayesian methods.

Frequentist approaches

Conventional approaches to data analysis in ecology estimate the

likelihood of observing the data (and more extreme data in the case of

null hypothesis testing). These approaches are referred to as frequentist

methods because they are based on the expected frequency that such data

would be observed if the same procedure of data collection and analysis

was implemented many times. Frequentist methods focus on the

frequency with which the observed data are likely to be obtained from

hypothetical replicates of sampling.

There are numerous types of frequentist statistics that are used in

ecology, including null hypothesis significance testing and information-

theoretic methods. These are applied below to the question about whether

southern brown tree frogs are present at the pond.

Fig. 1.2 The southern brown tree frog Litoria ewingii, a common species in

the ponds of Melbourne, Victoria. Photograph by Nick Clemann.
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Null hypothesis significance testing

The first statistical approach to answering the question is null hypothesis

significance testing. The null hypothesis for this first case might be that

the southern brown tree frog is absent from the site. The researcher

then seeks to disprove the null hypothesis with the collection of data.

The single piece of data in this case is that the frog was not detected.

The researcher then asks: ‘What is the probability of obtaining this result

if the null hypothesis were true?’3 This probability is the p-value of the

significance test. If the p-value is sufficiently small (conventionally if less

than 0.05), it means that the data (or more extreme data) would be

unlikely to occur if the null hypothesis is true. If the p-value is small, then

we assume that the data are inconsistent with the null hypothesis, which

is then rejected in favour of the alternative.

In the case of the frog survey, the p-value is equal to 1.0. This is

calculated as the probability that we would fail to record the frog

(i.e. obtain the observed data) if it is absent (i.e. if the null hypothesis is

true). The high p-value means that the researcher fails to reject the

null hypothesis that the frog is absent.

The other possible null hypothesis is that the frog is present at the

site. In this case, the probability of obtaining the data is equal to 0.2

(one minus the probability of detecting the species if present) given

that the null hypothesis is true. Thus, the p-value is 0.2, and using a

conventional cut-off of 0.05, the researcher would have a non-significant

result. The researcher would fail to reject the null hypothesis that the

southern brown tree frog was present.

It is surprising (to some people) that the two different null hypotheses

can produce different results. The conclusion about whether the species is

present or absent simply depends on which null hypothesis we choose.

The source of this surprise is our failure to consider statistical power,

which I will return to in Chapter 2.

Another possible source of surprise is that the p-value does not neces-

sarily provide a reliable indicator of the support for the null hypotheses.

For example, the p-value is equal to 1.0 for the null hypothesis that the

frog is absent. This is the largest possible p-value, but it is still not

proof that the null hypothesis is true. If we continued to return to the

3 In actual fact, a null hypothesis significance test asks what is the probability of obtaining
the data or a more extreme result. However, in this case, a more extreme result is not
possible; it is not possible to fail to detect the frog more than once with one visit, so the
p-value is simply the probability of observing the data.
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same pond and failed to find the frog, the p-value would remain equal to

1.0, insensitive to the accumulation of evidence that the frog is absent.

This apparent discrepancy occurs because frequentist methods in general

and p-values in particular do not provide direct statements about the

reliability of hypotheses (Berger and Sellke, 1987; Berger and Berry,

1988). They provide direct information about the frequency of occurrence

of data, which only gives indirect support for or against the hypotheses.

In this way, frequentist methods are only partially consistent with

mathematical logic, being confined to statements about data but not

directly about hypotheses (Berger and Sellke, 1987; Jaynes, 2003).

Information theoretic methods

An information theoretic approach based on ‘likelihood’ is an alternative

frequentist method to null hypothesis significance testing. It evaluates the

consistency of the data with multiple competing hypotheses (Burnham

and Anderson, 2002). In the current example, there are only two possible

hypotheses: the frog is absent (Ha) and the frog is present (Hp).

Likelihood-based methods ask: ‘What is the probability of observing the

data under each of the competing hypotheses?’ In this example it is the

probability of not detecting the species during a visit to a site.

Unlike null hypothesis testing, likelihood-based methods, including

information-theoretic methods, do not consider the possibility of more

extreme (unobserved) data. The likelihood for a given hypothesis can

be calculated as the probability of obtaining the data given that the

hypothesis is true.4 Despite the implication of its name, the likelihood of

a hypothesis is not the same as the probability that the hypothesis is true.

Under the first hypothesis (the frog is absent), the probability of

observing the data (Pr(D |Ha)) is equal to 1. Under the second hypothesis

(the frog is present) the probability (Pr(D |Hp)) is 0.2. Information-

theoretic methods then determine the amount of evidence in favour of

these two hypotheses by examining the ratio of these values (Burnham

and Anderson, 2002).5 These ratios may be interpreted by rules of thumb

(see also Chapter 4). Using the criteria of Burnham and Anderson (2002),

4 The likelihood need only be proportional to the probability of obtaining the data, not
strictly equal to it. Terms that do not include the data or the parameters being estimated
can be ignored because they will cancel out of the subsequent calculations.

5 Information-theoretic methods are modified by the number of parameters that are
estimated with the data. In this case, the parameter of the analyses (the detection rate) is
not estimated with the data, so the number of estimated parameters is zero.
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we might conclude that the southern brown tree frog is ‘considerably less’

likely to be present than it is to be absent (Pr(D |Hp)/Pr(D |Ha)¼ 1/5).

Bayesian methods

Frequentist methods are in general not well-suited to the species detection

problem because they are strictly limited to assessing long-run averages

rather than predicting individual observations (Quinn and Keough,

2002). This is revealing; frequentist methods are not strictly suitable for

predicting whether a species is absent from a particular site when it has

not been seen. Such a problem is fundamental in ecology, which relies

on knowing the distribution of species. In contrast, the species detection

problem can be tackled using Bayesian methods.

Bayesian methods are similar to likelihood-based methods, but also

incorporate prior information using what is known as ‘prior probabil-

ities’. Bayesian methods update estimates of the evidence in favour of

the different hypotheses by combining the prior probabilities and the

probabilities of obtaining the data under each of the hypotheses. The

probability that a hypothesis is true increases if the data support

it more than the competing hypotheses.

Why might the prior information be useful? If the researcher visited

a pond that appeared to have excellent habitat for southern brown tree

frogs (e.g. a large well-vegetated pond in a large leafy garden), then

a failure to detect the species on a single visit would not necessarily make

the researcher believe that the frog was absent. However, if the researcher

visited a pond that was very unlikely to contain the frog (e.g. a concrete

fountain in the middle of an asphalt car park), a single failure to detect

the frog might be enough to convince the researcher that the southern

brown tree frog did not occur at the pond. Frequentist methods cannot

incorporate such prior information, but it is integral to Bayesian

methods.

Another key difference between Bayesian methods and frequentist

methods is that instead of asking: ‘What is the probability of observing the

data given that the various hypotheses are true?’ Bayesian methods ask:

What is the probability of the hypotheses being true given the observed data?

At face value, this is a better approach for our problem because we are

interested in the truth of the hypotheses (the frog’s presence or absence

at the site) rather than the probability of obtaining the observed data

given different possible truths.
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In practice, Bayesian methods differ from likelihood methods by

weighting the likelihood values by the prior probabilities to obtain

posterior probabilities. I will use the two symbols Pr(Ha) and Pr(Hp) to

represent the prior probabilities. Therefore, the likelihood for the

presence of the frog given that it was not seen (0.2) is weighted by

Pr(Hp) and the likelihood for the absence of the frog (1.0) is weighted by

Pr(Ha). Thus, the posterior probability of presence is a function of the

prior probability Pr(Hp), the data (the frog was not seen) and the model,

which describes how the data were generated conditional on the presence

or absence of the frog. Now we must determine a coherent scheme for

determining the values for the prior probabilities Pr(Hp) and Pr(Ha).

This incorporation of prior information is one of the unique aspects

of Bayesian statistics. It also generates the most controversy.

Both hypotheses might be equally likely (prior to observing the

data) if half the sites in the study area were occupied by southern brown

tree frogs (Parris unpublished data). In this case, Pr(Ha)¼ 0.5, as does

Pr(Hp). With these priors, the probability of the southern brown tree

frog being absent will be proportional to 0.5� 1.0¼ 0.5, and the

probability of it being present will be proportional to 0.5� 0.2¼ 0.1.

The posterior probabilities must sum to one, so these proportional

values (0.5 and 0.1) can be converted to posterior probabilities by

dividing by their sum (0.5þ 0.1¼ 0.6). Therefore, the probability of

the frog being present is 1/6 (¼ 0.1/0.6), and the probability of absence

is 5/6 (¼ 0.5/0.6). So, with equal prior probabilities (Pr(Ha)¼
Pr(Hp)¼ 0.5), we would conclude that the presence of the frog is

five times less probable than the absence of the frog because the

ratio (Pr(Hp |D)/Pr(Ha |D)) equals 1/5. You may have noticed that

this result is numerically identical to the likelihood-based result. I will

return to this point later.

A different prior could have been chosen for the analysis. A statis-

tical model predicts the probability of occupancy of ponds by southern

brown tree frogs based on the level of urbanization (measured by road

density), characteristics of the vegetation, and the size of the pond (based

on Parris 2006.). If the pond represented relatively high-quality habitat,

with a predicted probability of occupancy of 0.75, then the probabil-

ity of the frog being present will be proportional to 0.75� 0.2¼ 0.15 and

the probability of absence will be proportional to (1� 0.75)� 1.0¼ 0.25.

With these priors, the probability of the frog being present is equal

to 3/8 (¼ 0.15/(0.15þ 0.25)), and the probability of absence is 5/8

(¼ 0.25/(0.15þ 0.25)).
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The incorporation of prior information (the presence of good quality

habitat) increases the probability that the pond is occupied by south-

ern brown tree frogs compared to when the prior information is ignored

(0.375 versus 0.167). The actual occupancy has not changed at all � the

pond is still either occupied or not. What has changed is the researcher’s

belief in whether the pond is occupied. These Bayesian analyses may be

formalized using Bayes’ rule, which, following a short introduction to

conditional probability (Box 1.2), is given in Box 1.3.

Box 1.2
Conditional probability

Bayes’ rule is based on conditional probability. Consider two events:

event C and event D. We are interested in the probability of event C

occurring given event D has occurred. I will write this probability

using the symbol Pr(C |D), and introduce three more symbols:

Pr(C) � the probability of event C occurring;

Pr(D) � the probability of event D occurring; and

Pr(C and D) � the probability of both events occurring together.

Conditional probability theory tells us that:

PrðC and DÞ ¼ PrðDÞ � PrðC jDÞ,
which in words is: the probability of events C and D both occurring is

equal to the probability of event C occurring given that event D has

occurred multiplied by the probability of event D occurring

(independent of event C ). The | symbol means ‘given the truth or

occurrence of ’.

The above can be rearranged to give:

PrðC jDÞ ¼ PrðC and DÞ=PrðDÞ:

For example, Pfiesteria, a toxic alga is present in samples with

probability 0.03 (Stow and Borsuk 2003). Pfiesteria is a subset of

Pfiesteria-like organisms (PLOs), the latter being present in

samples with probability 0.35. Therefore, we can calculate the

conditional probability that Pfiesteria is present given that PLOs

are present:

PrðPfiesteria jPLOÞ ¼ PrðPfiesteria and PLOÞ=PrðPLOÞ
¼ 0:03=0:35 ¼ 0:086:
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