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1 Introduction to Viscous Flow

1.1 Why Study Fluid Dynamics?

Fluid dynamics is a branch of classical physics. It is an instance of continuum me-

chanics. A fluid is a continuous, deformable material. It is a material that flows in

response to imposed forces. This is embodied in the everyday experience of draining

water from a sink. The water flows under the action of gravity. It does not have a

fixed shape; it fills the sink, conforming to its shape. The water flows with variable

velocity, depending on its distance from the drain. All these distinguish fluid motion

from solid dynamics. As another example, a pump propels water through a pipe or

through the cooling system of a car. How does the reciprocating movement of the

pump produce directed flow, extending to distant parts of the cooling circuit? One

way or the other, the pump must be exerting forces on the fluid; one way or the

other, these forces are communicated to distant portions of the fluid and sets them

in motion. It is far from obvious what the nature of that flow will be, especially in a

complex geometry. It may be laminar, it may be turbulent; it may be unidirectional,

it may be recirculating.

Recirculation is the occurrence of backflow, opposite to the direction of the

primary stream. This can be seen behind the pedestals supporting a bridge in a

swift river. Despite the strong current, the flow direction reverses, and a circulating

eddy forms in a region behind the pedestal. How is such behavior understood and

predicted? An understanding requires knowledge of viscous action, of vorticity, of

turbulence, and of the governing equations.

As a fluid flows around an obstruction, different points in the fluid flow with

different velocities. The motion is continuous; hence, the velocity varies smoothly

with position. The fluid might be imagined to be divided into infinitesimal volumes –

which can be referred to as fluid particles. Then the fluid flow involves relative

movement of the particles. Because the flow varies continuously with position, these

particles must influence each other to maintain the smoothness of the flow field. That

influence is via the forces of pressure and of viscous friction. It is a scientific triumph

that when equations are devised to describe these forces acting on the fluid particles,

the rich variety of fluid mechanics emerges. That success is most evident in computer

simulation of fluid flow.

The trajectories of fluid particles are the streamlines of motion. These stream-

lines can be curves stretching from inflow to outflow, or they can be closed curves,
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2 Introduction to Viscous Flow

corresponding to eddying flow. The flow over a rock in a stream or past a spoon

stirred through a cup of coffee are examples containing eddying flow. It is not dif-

ficult to observe phenomenology of fluid motion: hold a lighted candle, or tissue

paper, at arm’s length and puff very quickly. A vortex ring travels from your mouth

to the candle. There is a time delay before it flickers; that is because the vortex travels

with a finite speed. Now suck air into your mouth; the candle shows no evidence of

flow. The vortex flows into your mouth. The flow outside is then quite different from

when you blew the air out.

Some interesting and challenging scientific and engineering questions already

suggest themselves. What causes the eddies and vortices? Why is the outflow so

different from the inflow? What drives the flow through a conduit or over an obstacle?

How is motion communicated to distant portions of the fluid? How can the flow rate

be predicted? How are the streamlines of a fluid flow determined? In any but the

simplest cases, these are challenging questions. There is a body of knowledge that

can be called on; but one is rapidly struck with how difficult it is to answer even fairly

simple questions about fluid flow.

Computer simulation has changed this, rather substantially. Flow in complex ge-

ometry can be solved numerically. The phenomena seen in laboratory experiments,

and in more casual experience, can be reproduced with quantitative accuracy. To an

extent, older theories and analyses have been enlarged by computation. The laws

governing fluid flow have been found to be extremely accurate; one wants only suffi-

cient computer power and efficient algorithms to produce solutions. Computer simu-

lation becomes a method of solution, complementary to paper-and-pencil analysis. It

provides further understanding of fluid flow and a tool for engineering analysis. How-

ever, computer simulations are solutions of a different nature from classical, exact,

or approximate solutions. They are numerical data rather than formulas. Traditional

theory is not displaced; its role evolves and it provides the understanding needed to

formulate and make sense of computer-aided analysis. The additional understanding

of fluid dynamics that stems from simulation should be developed in concert with

theory. The motive to study fluid dynamics is to understand its phenomena. The

approach is to devise and solve the laws of fluid motion.

1.2 Viscosity

At the root is the governing laws. These are the equations of conservation; conserva-

tion of mass and momentum, at the present stage. Friction is an important element

of fluid flow. In the absence of friction, a flat plate, dragged tangentially across the

surface of a tank of water, would slide freely and induce no movement in the water.

But, in the presence of friction, motion is communicated to the water adjacent to the

plate and thence a circulation is established in the tank.

Friction internal to a fluid flow is characterized by viscosity. The viscosity coef-

ficient, µ, is an empirical property of the fluid. For instance, a liquid is more viscous

than a gas. As temperature increases, liquids flow more easily (think of tar, for ex-

ample) so viscosity decreases with temperature. Gases have the opposite property,
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1.2 Viscosity 3

Table 1.1. Viscosities at room temperature (20çC)

µ Ã ¿

Fluid g/cm · s g/cm3 cm2/s

Air 1.8 × 1024 1.2 × 1023 0.15

Water 0.01 1.0 0.01

CO2 1.37 × 1024 1.79 × 1023 0.077

Engine oil 10 0.89 11.2

Glycerin 7.99 1.26 6.34

Kerosene 0.024 0.78 0.031

Methyl alcohol 0.0055 0.785 0.007

that viscosity increases with temperature. That behavior is less intuitive. It originates

in the increased molecular agitation as temperature increases. Clearly, µ must be

measured as a function of the fluid and of the temperature. In gases, the coefficient

increases approximately as the square root of temperature; in liquids, it falls as the

exponential of one over temperature [exp(E/kT)]. Detailed formulas need not be

discussed here. Values of µ for many fluids are available in computational fluid dy-

namics (CFD) codes and in handbooks. The magnitude of the viscosity is essential

to determining flow regimes. Table 1.1 contains a few representative values at room

temperature.

The coefficient, µ, is the dynamic viscosity. For future reference, the kinematic

viscosity is defined as dynamic viscosity divided by density as follows:

¿ = µ/Ã. (1.1)

Kinematic viscosity has dimensions of length2/time; dynamic viscosity has dimen-

sions of density times this or mass/length · time. Kinematic viscosity is most relevant

to constant density, incompressible flow. Oddly enough, the kinematic viscosity of

liquids is often lower than that of gasses. For instance, air at 20çC and 1 atmosphere,

has a kinematic viscosity of 0.15 cm2/s; for water it is 0.01 cm2/s. This is a consequence

of the higher density of water.

Viscosity produces forces as a consequence of the relative motion of fluid parti-

cles. That might be thought of as friction associated with the particles rubbing across

one another. A more correct statement is that viscous stress is a consequence of the

fluid rate of strain.

The need to distinguish rate of strain from simply relative motion is because

a fluid in solid body rotation experiences no viscous stress. At a macroscopic level

that is clear: if the entire fluid is in solid body rotation, then in a frame rotating

with the fluid there is no motion and hence no viscous stress. In a fixed frame, solid

body motion means that the velocity is �r in the angular direction. There is relative

motion in the sense that fluid at r = 0 is at rest, whereas at r > 0 it is in motion, but

there is no viscous stress.

The same concept applies, less obviously, at any point in a nonrotating fluid.

Relative motion can be separated into rotation and rate of strain; only the latter
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4 Introduction to Viscous Flow

produces viscous stress. The velocity is a field: at any point x = (x, y, z), three com-

ponents of velocity (u, v, w) can be measured. Rate of strain is a measure of how this

velocity varies from point to point within the vicinity of x. Mathematically, if two

points are separated by a distance dx, their relative velocity is

ui(x + dx) 2 ui(x) j dx · 'ui,

where i = 1, 2, or 3 corresponding to u, v, or w. The last term expands to

dx
"ui

"x
+ dy

"ui

"y
+ dz

"ui

"z
. (1.2)

The convention of summation on repeated subscripts permits this to be written

equivalently as

dxj

"ui

"xj

.

Because the same index, j , appears twice in this product, the convention is that j is

summed from 1 through 3, so that this is exactly the same expression as Eq. (1.2). This

is a rather terse introduction to index notation. The uninitiated reader might want

to write out corresponding formulas in index notation and in Cartesian components.

That exercise is illustrated in the next paragraph.

We now introduce the separation of the velocity gradient into rate of strain

and rotation; it is equivalent to a separation into symmetric and antisymmetric

components, respectively. Specifically,

"ui

"xj

=
1

2

"

"ui

"xj

+
"uj

"xi

"

+
1

2

"

"ui

"xj

2
"uj

"xi

"

. (1.3)

The first term on the right is the rate of strain, which can be denoted Sij ; the second

is minus the rate of rotation, which can be denoted 2�ij :

Sij =
1

2

"

"ui

"xj

+
"uj

"xi

"

,

2 �ij =
1

2

"

"ui

"xj

2
"uj

"xi

"

.

(1.4)

Only Sij produces viscous stress. In the standard index notation used here, i and j

are dummy subscripts, for which any of the numbers (1, 2, 3) corresponding to the

directions (x, y, z) can be substituted. For instance, with i = 1 and j = 2, Eq. (1.3) says

"u

"y
=

1

2

"

"u

"y
+

"v

"x

"

+
1

2

"

"u

"y
2

"v

"x

"

.

In solid body rotation, u = 2�y and v = �x. The first term vanishes and the second

equals 2�; the rate of strain is zero under solid body rotation. An irrotational flow

is one for which the second term vanishes: "u/"y = "v/"x. For instance, u = ³y,

v = ³x is an irrotational straining field.
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1.3 Navier–Stokes Equations 5

The other element in the description of viscous forces is that they are character-

ized as a stress rather than as a force per se. This should not be unfamiliar: pressure

also is a stress. That is, it is a force per unit area, acting in the direction normal to

a surface. Viscous stress is similar: it is a force per unit area, but it need not act

normal to the surface; it can have both normal and tangential components. If the

fluid motion is just a shearing tangential to a surface, then it is clear that the viscous

stress will cause a force in the tangential direction. It is less obvious, but true, that if

the fluid motion is toward the surface there will also be a component of force in the

normal direction. That is best described mathematically, as will be done in the next

section.

Given the stress, the corresponding force on an object is obtained by integrat-

ing it over the entire area of the surface. This can be accomplished inside a CFD

code, so one need only understand the origin of the force that is being computed.

The reason that the force originates as a stress is that fluids are deformable ma-

terial, so their dynamical properties must be defined for the fluid particles. Stress

is the force per area acting on a fluid particle. It is independent of the size of the

infinitesimal fluid particle. The force, by contrast, is proportional to the size. In

other words, force = stress · area . As the area becomes tiny, the stress remains finite

and the force becomes tiny. Just like pressure, viscous stress is the quantity that is

defined pointwise throughout the fluid. Unlike pressure, it exists only in a flowing

fluid.

Viscous stress is incorporated into the governing, Navier–Stokes, momentum

equations that are solved by CFD software. The gist of those equations is the next

topic.

1.3 Navier–Stokes Equations

It is assumed that the reader has studied elementary fluid mechanics and has been

exposed to the basic notions of fluid flow. These include the role of pressure in

momentum transport, conservation of mass in an incompressible, deformable fluid

medium, and the origin of viscous, frictional forces. The last have just been discussed.

This section provides an informal description of the Navier–Stokes momentum equa-

tion for constant density, incompressible flow. Because we rely on CFD software for

solutions to the equations, we will abbreviate the treatment that can be found more

fully in standard texts on viscous flow (White, 1991).

The Navier–Stokes equations were named for the French engineer and scientist

Claude Louis Marie Henri Navier and the English mathematical physicist George

Gabriel Stokes. The essential form of these equations was set forth by Navier in

1822; however, he did not properly treat the origin of viscous stress. The latter was

addressed by others, in particular Poisson and Saint-Venant, but independently de-

veloped by Stokes in 1845. Stokes constructed a number of solutions to the equations

of viscous flow, which confirmed their ability to describe fluid dynamical phenom-

ena. An example is creeping flow, also called “Stokes flow,” which we discuss in
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6 Introduction to Viscous Flow

Chapter 3. Navier is properly credited for the seminal formulation of the Navier–

Stokes equations and Stokes for ushering their entry into theoretical physics.

Essentially, the Navier–Stokes momentum equation is an expression of Newton’s

law ma = F applied to an infinitesimal fluid volume. Here we use the convention that

bold letters denote vectors. On a volumetric basis, the mass becomes mass per unit

volume or density Ã. The acceleration becomes that following the fluid element, or

the convective derivative of velocity, Du/Dt, and the force per unit volume includes

both pressure and viscous contributions, as follows:

Ã
Du

Dt
= Fpress + Fviscous. (1.5)

We must flesh out the meaning of these various terms.

The equations of motion referred to fluid particles is called the Lagrangian

description. The fluid particle occupies a position X(t; x0) that changes with time.

The particle is labeled here by its initial location x0. It is more convenient to describe

the flow in terms of the velocity at fixed points. We think of a flow field, u(x),

rather than of the dynamics of particles. The only complication in applying Newton’s

law to the field is transforming the acceleration of the fluid particle into velocity

changes at a fixed position.

To derive the requisite expression, first consider a material that is carried with

the fluid element. The material has a concentration c. An observer at a fixed point,

x, will see the concentration change as different particles arrive. At any given time,

the concentration is that of the particle currently at x, that is, of the particle with

X(t) = x. At time ·t later, a particle that was at X 2 ·X, say, will have moved to

x. The observer then sees its concentration c(X 2 ·X). Thus the observer sees the

change

"c

"t
=

c(X 2 ·X) 2 c(X)

·t
j

2·X · 'c

·t

as the fluid element occupying position x changes from that at time t to that at time

t + ·t. ·X/·t is the velocity u. Hence, the motion of fluid elements produces the time

variation

"c

"t
= 2u · 'c.

There is nothing special about concentration: the same result applies to any quantity

convected with the flow. Putting both terms on the same side of the last equation

shows that a transported quantity satisfies

Dc

Dt
c

"c

"t
+ u · 'c = 0.

This is a statement that the changes at a fixed position are simply due to different

elements arriving at that position, carrying their particular concentration. If the

quantity were not simply convected but also underwent some change, then the right

side would be nonzero.
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1.3 Navier–Stokes Equations 7

Thus, we arrive at the expression of Newton’s law at a fixed point – which is called

the Eulerian description. The quantity being carried is now the fluid momentum, Ãu.

It is carried with the particles but also changes as a consequence of forces. The flow

field obeys

Ã

�

"u

"t
+ (u · ')u

�

= Fpress + Fviscous. (1.6)

A more general concept than the right side of Eqs. (1.5) or (1.6) is to combine

pressure and viscous terms into a single stress tensor. Stresses are forces acting on

a surface per unit area. Pressure times area is a force acting perpendicularly to the

surface; in other words, it is a normal stress. Viscosity produces both normal and

tangential, or shearing, stresses. The tangential stress is quite intuitive: it is analogous

to the force felt when rubbing one hand over the other. As mentioned in the last

section, it is also the case that viscosity produces a component of normal force,

parallel to pressure. On any surface, the aggregate stress is a vector, with components

both normal and tangential to the surface, composed of contributions from pressure

and from viscosity.

How are forces produced by stress represented? The aggregate force can be

denoted Fs. It is the force produced by a stress acting on a surface. Consider that

surface to be a small, differential area, dA. Further, let that area be the magnitude of

a vector dA that is directed normal to the surface. The stress, σ, now can be defined:

the force is the dot product of the stress with the area vector

Fs = σ · dA. (1.7)

This simply defines the stress tensor σ as a matrix relating the force vector to the area

vector. Purely as a matter of consistency, Eq. (1.7) shows that stress has dimensions

of force per area. In component form, the matrix relation [Eq. (1.7)] between stress

and surface force is stated as
û

ü

ý

Fx

Fy

Fz

þ

ÿ

�
=

û

ü

ý

Ãxx Ãxy Ãxz

Ãyx Ãyy Ãyz

Ãzx Ãzy Ãzz

þ

ÿ

�
·

û

ü

ý

dAx

dAy

dAz

þ

ÿ

�
. (1.8)

The term stress tensor was slipped into the text, above. A tensor is a generalization

of a vector. A vector has a direction. A tensor has one or more directions. A vector

is a first-order tensor, having a single direction. Stress is a second-order tensor; it is

associated with two directions. The two directions are that of the force vector and

that of the area vector. Matrix σ relates the direction of a force acting on a surface

to the area vector of that surface.

Equation (1.7), integrated over a solid surface, gives the net force exerted by

the flowing fluid. When, in later chapters, we consider examples of fluid forces on

objects, the quantity
�

σ · dA (1.9)

is being evaluated by integration over the entire surface in question.
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8 Introduction to Viscous Flow

Figure 1.1. Stresses on a face of a fluid element.

The force evaluation usually can be obtained with the CFD software; but it

should be understood that the computer code is providing this surface integral of the

stress tensor. In fact the force can be broken down into contributions from pressure

and viscosity. The accuracy of the numerical evaluations depends on how finely the

mesh covers the surface and on how accurately the viscous and pressure stresses

are computed by the flow solution. The force evaluation is a postprocessing of that

solution.

The presence of two contributions to stress can be acknowledged by writing

σ = σviscous + σpressure, (1.10)

Precise expressions for these two contributions will be given shortly.

Forces due to stress also act inside the fluid. Within the fluid, they are the force

on the face of an infinitesimal fluid element (Figure 1.1). That element will move if

there is an imbalance of forces. Consider two opposite sides of an element having

oppositely directed normals. The force imbalance is due to a difference between the

stresses acting on the opposite sides, that is, to a differential of stress. If ÃLA is the

force on the left side of the fluid element and ÃRA is the force on its right side, then

(ÃR 2 ÃL)A is the force imbalance. If � is the length of the element and V = A� its

volume, then the resultant force is

ÃR 2 ÃL

�
A� =

ÃR 2 ÃL

�
V j

dÃ

d�
V.

That is, the force per unit volume is the directional derivative of the stress. The

equation of motion is now MDu/Dt = V dÃ/d�. The ratio M/V is the density Ã.

It takes only a bit of elaboration to recognize that the directional derivative dÃ/d�

should be generalized to the divergence of the stress ' · σ. Essentially, the gradient

operator gives the directional derivative.

Hence, the force that appears in the Navier–Stokes momentum equation is the

divergence of stress, and Newton’s law becomes

Ã
Du

Dt
= Ã

�

"u

"t
+ (u · ')u

�

= ' · σ. (1.11)

This is simply Newton’s law (1.5) when the force is caused by a stress gradient. As

explained above, "u/"t + (u · ')u is the Eulerian form for the acceleration Du/Dt.
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1.3 Navier–Stokes Equations 9

Now to make explicit the observation that stress is composed of a part due to

pressure and a part due to viscosity. The part due to pressure is just pressure times

the identity matrix, with a minus sign:

σpress = 2pI. (1.12)

The minus sign arises because pressure applied to a surface acts inward to the surface.

For instance, if the surface is the xy plane, an imposed high pressure will push down

in the 2z direction on the surface. That is a special case of the general formula

Fpress = σpress · dA = 2pI · dA = 2pdA.

Pressure times area is the inward force. The pressure contribution to stress gives rise

to a pressure gradient on the right side of Eq. (1.11): ' · σpress = 2' p. This might

be comforting to the reader who is wondering why there is no pressure gradient in

Eq. (1.11).

The representation of viscous stress is less obvious. In a Newtonian fluid, it is

assumed proportional to the rate of strain of the fluid motion, as described in §1.2.

Viscosity is simply the coefficient of proportionality. This is stated as

σviscous = µ('u +
t['u]), (1.13)

where 'u is a matrix of velocity derivatives and t['u] is its transpose. Equation (1.13)

is a statement in vector form of the relation

Ãij = 2µSij

in index form, with Sij given by Eq. (1.4). When this formula is used for an incompress-

ible fluid, the viscous force simplifies to the Laplacian of velocity: ' · σviscous = µ'2
u.

The Navier–Stokes equations of an incompressible (Newtonian) fluid assume the

form

Ã

�

"u

"t
+ (u · ')u

�

= 2' p + µ'
2
u. (1.14)

The pressure and viscous forces are stated explicitly here. Lengthy discussions of the

derivation of this equation, and some caveats that must be made in our derivation,

can be found in standard texts (Panton, 1997; White, 1991). In fact, it is an equation

that is quite remarkable for its ability to describe the phenomena of fluid flow. It is

equally remarkable for its mathematical intransigence. Basically, it is the momentum

equation that is solved by CFD software.

That is not quite correct: (1.14) is an equation for the velocity vector u or for the

u, v, and w components of velocity. It contains the further fluid properties Ã and p.

Consider constant density flow, such as air at low speed or water without significant

contaminant concentrations. Then pressure is the only additional dynamical variable.

Another equation is needed to predict it.

In many situations, the interest is in essentially incompressible flow. Incompress-

ible means that pressure changes produce negligible density changes: dÃ/dp j 0. The
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10 Introduction to Viscous Flow

reader might recognize that dÃ/dp is one over the squared sound speed, c22, in a gas.

In that case, the approximation of incompressibility is justified if the Mach number,

M = u/c, is small. In other words, the smallness of dÃ/d p is a relative statement. It

says that pressure variations go primarily into accelerating the flow rather than into

changing the density. Certainly air is compressible; it can be compressed in a pump, or

into a tire. But for the purpose of fluid dynamics, it can be treated as incompressible

if the flowing fluid does not cause significant compression. This is normally the case

when the Mach number is low. Liquids are almost always incompressible. Density

variations can occur, such as those due to salt dissolved in water, but, again, it is not

the fluid velocity that causes density to vary.

The condition of incompressibility is that infinitesimal fluid elements retain their

volume. Their shape will deform, but the net volume associated with an element is

constant. We are defining the fluid element as a fixed amount of mass, so that constant

density is equivalent to constant volume. The condition of incompressibility requires

the divergence of the velocity to vanish:

' · u = 0 (1.15)

or "xu + "yv + "zw = 0. Essentially, this is saying that the volume deformations in

the x, y, and z directions sum to zero. It may be justified as follows.

Consider a rectangular material element – for instruction, we work in two di-

mensions. The corners of the rectangle move with the fluid. Let the lower-left and

upper-right corners be (X, Y) and (X + ·X, Y+ ·Y). The area is A = ·X·Y. The

rectangle will deform as the fluid flows, but if it is incompressible, the area does not

change. Then Eq. (1.15) follows from differentiating the area with respect to time

and setting it to 0:

dA

dt
= 0 = ·Y

d

dt
·X + ·X

d

dt
·Y

= A

"

1

·X

d

dt
·X +

1

·Y

d

dt
·Y

"

= A

"

·u

·X
+

·v

·Y

"

= A' · u,

where ·u = d·X/dt and ·v = d·Y/dt were substituted. In three dimensions, the same

argument is applied to a fluid volume.

1.4 Reynolds Number

The boundary condition on rigid surfaces is that the fluid immediately adjacent to the

surface moves with the wall velocity. This is the no-slip condition. It says that there

is no discontinuity in velocity at the wall. As a stationary wall is approached, the

fluid velocity tends continuously to zero. This no-slip boundary condition is not

indisputable. In rarified gases, and at the intersection of a gas–fluid interface with

a wall, it is violated. But at normal densities and pressures, and in homogeneous
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