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The intriguing natural numbers

‘The time has come,’ the Walrus said, ‘To talk of many things.’

Lewis Carroll

1.1 Polygonal numbers

We begin the study of elementary number theory by considering a few

basic properties of the set of natural or counting numbers, f1, 2, 3, . . .g.
The natural numbers are closed under the binary operations of addition and

multiplication. That is, the sum and product of two natural numbers are

also natural numbers. In addition, the natural numbers are commutative,

associative, and distributive under addition and multiplication. That is, for

any natural numbers, a, b, c:

aþ (bþ c) ¼ (aþ b)þ c, a(bc) ¼ (ab)c (associativity);

aþ b ¼ bþ a, ab ¼ ba (commutativity);

a(bþ c) ¼ abþ ac, (aþ b)c ¼ acþ bc (distributivity):

We use juxtaposition, xy, a convention introduced by the English mathema-

tician Thomas Harriot in the early seventeenth century, to denote the

product of the two numbers x and y. Harriot was also the first to employ

the symbols ‘.’ and ‘,’ to represent, respectively, ‘is greater than’ and ‘is

less than’. He is one of the more interesting characters in the history of

mathematics. Harriot traveled with Sir Walter Raleigh to North Carolina in

1585 and was imprisoned in 1605 with Raleigh in the Tower of London

after the Gunpowder Plot. In 1609, he made telescopic observations and

drawings of the Moon a month before Galileo sketched the lunar image in

its various phases.

One of the earliest subsets of natural numbers recognized by ancient

mathematicians was the set of polygonal numbers. Such numbers represent

an ancient link between geometry and number theory. Their origin can be

traced back to the Greeks, where properties of oblong, triangular, and

square numbers were investigated and discussed by the sixth century BC,

pre-Socratic philosopher Pythagoras of Samos and his followers. The
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Greeks established the deductive method of reasoning whereby conclusions

are derived using previously established results.

At age 18, Pythagoras won a prize for wrestling at the Olympic games.

He studied with Thales, father of Greek mathematics, traveled extensively

in Egypt and was well acquainted with Babylonian mathematics. At age

40, after teaching in Elis and Sparta, he migrated to Magna Graecia, where

the Pythagorean School flourished at Croton in what is now Southern Italy.

The Pythagoreans are best known for their theory of the transmigration of

souls and their belief that numbers constitute the nature of all things. The

Pythagoreans occupied much of their time with mysticism and numerology

and were among the first to depict polygonal numbers as arrangements of

points in regular geometric patterns. In practice, they probably used

pebbles to illustrate the patterns and in doing so derived several funda-

mental properties of polygonal numbers. Unfortunately, it was their obses-

sion with the deification of numbers and collusion with astrologers that

later prompted Saint Augustine to equate mathematicans with those full of

empty prophecies who would willfully sell their souls to the Devil to gain

the advantage.

The most elementary class of polygonal numbers described by the early

Pythagoreans was that of the oblong numbers. The nth oblong number,

denoted by on, is given by n(nþ 1) and represents the number of points in

a rectangular array having n columns and nþ 1 rows. Diagrams for the

first four oblong numbers, 2, 6, 12, and 20, are illustrated in Figure 1.1.

The triangular numbers, 1, 3, 6, 10, 15, . . . , tn, . . . , where tn denotes

the nth triangular number, represent the numbers of points used to portray

equilateral triangular patterns as shown in Figure 1.2. In general, from the

sequence of dots in the rows of the triangles in Figure 1.2, it follows that

tn, for n > 1, represents successive partial sums of the first n natural

numbers. For example, t4 ¼ 1þ 2þ 3þ 4 ¼ 10. Since the natural num-

bers are commutative and associative,

tn ¼ 1þ 2 þ � � � þ (n� 1)þ n

and

…

Figure 1.1
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tn ¼ nþ (n� 1) þ � � � þ 2þ 1;

adding columnwise, it follows that 2tn ¼ (nþ 1)þ (nþ 1) þ � � �
þ (nþ 1) ¼ n(nþ 1). Hence, tn ¼ n(nþ 1)=2. Multiplying both sides of

the latter equation by 2, we find that twice a triangular number is an oblong

number. That is, 2tn ¼ on, for any positive integer n. This result is

illustrated in Figure 1.3 for the case when n ¼ 6. Since 2þ 4 þ � � �
þ 2n ¼ 2(1þ 2 þ � � � þn) ¼ 2 . n(nþ 1)=2 ¼ n(nþ 1) ¼ on, the sum of

the first n even numbers equals the nth oblong number.

The square numbers, 1, 4, 9, 16, . . . , were represented geometrically by

the Pythagoreans as square arrays of points, as shown in Figure 1.4. In

1225, Leonardo of Pisa, more commonly known as Fibonacci, remarked,

in Liber quadratorum (The Book of Squares) that the nth square number,

denoted by sn, exceeded its predecessor, sn�1, by the sum of the two roots.

That is sn ¼ sn�1 þ ffiffiffiffi
sn

p þ ffiffiffiffiffiffiffiffiffi
sn�1

p
or, equivalently, n2 ¼ (n� 1)2 þ n þ

(n� 1). Fibonacci, later associated with the court of Frederick II, Emperor

of the Holy Roman Empire, learned to calculate with Hindu–Arabic

…

Figure 1.2

Figure 1.3

…

Figure 1.4
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numerals while in Bougie, Algeria, where his father was a customs officer.

He was a direct successor to the Arabic mathematical school and his work

helped popularize the Hindu–Arabic numeral system in Europe. The origin

of Leonardo of Pisa’s sobriquet is a mystery, but according to some

sources, Leonardo was figlio de (son of) Bonacci and thus known to us

patronymically as Fibonacci.

The Pythagoreans realized that the nth square number is the sum of the

first n odd numbers. That is, n2 ¼ 1þ 3þ 5 þ � � � þ (2n� 1), for any

positive integer n. This property of the natural numbers first appears in

Europe in Fibonacci’s Liber quadratorum and is illustrated in Figure 1.5,

for the case when n ¼ 6.

Another interesting property, known to the early Pythagoreans, appears

in Plutarch’s Platonic Questions. Plutarch, a second century Greek biogra-

pher of noble Greeks and Romans, states that eight times a triangular

number plus one is square. Using modern notation, we have 8tn þ 1 ¼
8[n(nþ 1)=2]þ 1 ¼ (2nþ 1)2 ¼ s2nþ1. In Figure 1.6, the result is illu-

strated for the case n ¼ 3. It is in Plutarch’s biography of Marcellus that we

find one of the few accounts of the death of Archimedes during the siege of

Syracuse, in 212 BC.

Around the second century BC, Hypsicles [HIP sih cleez], author of

Figure 1.5

Figure 1.6
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Book XIV, a supplement to Book XIII of Euclid’s Elements on regular

polyhedra, introduced the term polygonal number to denote those natural

numbers that were oblong, triangular, square, and so forth. Earlier, the

fourth century BC philosopher Plato, continuing the Pythagorean tradition,

founded a school of philosophy near Athens in an area that had been

dedicated to the mythical hero Academus. Plato’s Academy was not

primarily a place for instruction or research, but a center for inquiry,

dialogue, and the pursuit of intellectual pleasure. Plato’s writings contain

numerous mathematical references and classification schemes for numbers.

He firmly believed that a country’s leaders should be well-grounded in

Greek arithmetic, that is, in the abstract properties of numbers rather than

in numerical calculations. Prominently displayed at the Academy was a

maxim to the effect that none should enter (and presumably leave) the

school ignorant of mathematics. The epigram appears on the logo of the

American Mathematical Society. Plato’s Academy lasted for nine centuries

until, along with other pagan schools, it was closed by the Byzantine

Emperor Justinian in 529.

Two significant number theoretic works survive from the early second

century, On Mathematical Matters Useful for Reading Plato by Theon of

Smyrna and Introduction to Arithmetic by Nicomachus [nih COM uh kus]

of Gerasa. Smyrna in Asia Minor, now Izmir in Turkey, is located about 75

kilometers northeast of Samos. Gerasa, now Jerash in Jordan, is situated

about 25 kilometers north of Amman. Both works are philosophical in

nature and were written chiefly to clarify the mathematical principles found

in Plato’s works. In the process, both authors attempt to summarize the

accumulated knowledge of Greek arithmetic and, as a consequence, neither

work is very original. Both treatises contain numerous observations

concerning polygonal numbers; however, each is devoid of any form of

rigorous proofs as found in Euclid. Theon’s goal was to describe the beauty

of the interrelationships between mathematics, music, and astronomy.

Theon’s work contains more topics and was a far superior work mathema-

tically than the Introduction, but it was not as popular. Both authors note

that any square number is the sum of two consecutive triangular numbers,

that is, in modern notation, sn ¼ tn þ t n�1, for any natural number n. 1.

Theon demonstrates the result geometrically by drawing a line just above

and parallel to the main diagonal of a square array. For example, the case

where n ¼ 5 is illustrated in Figure 1.7. Nicomachus notes that if the

square and oblong numbers are written alternately, as shown in Figure 1.8,

and combined in pairs, the triangular numbers are produced. That is, using

modern notation, t2n ¼ sn þ on and t2nþ1 ¼ snþ1 þ on, for any natural

1.1 Polygonal numbers 5
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number n. From a standard multiplication table of the first ten natural

numbers, shown in Table 1.1, Nicomachus notices that the major diagonal

is composed of the square numbers and the successive squares sn and snþ1

are flanked by the oblong numbers on. From this, he deduces two properties

that we express in modern notation as sn þ snþ1 þ 2on ¼ s2nþ1 and

on�1 þ on þ 2sn ¼ s2n.

Nicomachus extends his discussion of square numbers to the higher

dimensional cubic numbers, 1, 8, 27, 64, . . . , and notes, but does not

establish, a remarkable property of the odd natural numbers and the cubic

numbers illustrated in the triangular array shown in Figure 1.9, namely, that

the sum of the nth row of the array is n3. It may well have been

Nicomachus’s only original contribution to mathematics.

Figure 1.7
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Figure 1.8

Table 1.1.

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100
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In the Introduction, Nicomachus discusses properties of arithmetic,

geometric, and harmonic progressions. With respect to the arithmetic

progression of three natural numbers, he observes that the product of the

extremes differs from the square of the mean by the square of the common

difference. According to this property, known as the Regula Nicomachi, if

the three terms in the progression are given by a� k, a, aþ k, then

(a� k)(aþ k)þ k2 ¼ a2. In the Middle Ages, rules for multiplying two

numbers were rather complex. The Rule of Nicomachus was useful in

squaring numbers. For example, applying the rule for the case when

a ¼ 98, we obtain 982 ¼ (98� 2)(98þ 2)þ 22 ¼ 96 . 100þ 4 ¼ 9604.

After listing several properties of oblong, triangular, and square num-

bers, Nicomachus and Theon discuss properties of pentagonal and hexago-

nal numbers. Pentagonal numbers, 1, 5, 12, 22, . . . , p5 n, . . . , where p5 n
denotes the nth pentagonal number, represent the number of points used to

construct the regular geometric patterns shown in Figure 1.10. Nicomachus

generalizes to heptagonal and octagonal numbers, and remarks on the

patterns that arise from taking differences of successive triangular, square,

pentagonal, heptagonal, and octagonal numbers. From this knowledge, a

general formula for polygonal numbers can be derived. A practical tech-

nique for accomplishing this involving successive differences appeared in

a late thirteenth century Chinese text Works and Days Calendar by Wang

Xun (SHUN) and Guo Shoujing (GOW SHOE GIN). The method was

mentioned in greater detail in 1302 in Precious Mirror of the Four

1
3 5

7 9 11
13 15 17 19

21 23 25 27 29
.............................................

1
8
27
64
125

Figure 1.9

…

Figure 1.10
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Elements by Zhu Shijie (ZOO SHE GEE), a wandering scholar who earned

his living teaching mathematics. The method of finite differences was

rediscovered independently in the seventeenth century by the British

mathematicians Thomas Harriot, James Gregory, and Isaac Newton.

Given a sequence, ak , akþ1, akþ2, . . . , of natural numbers whose r th

differences are constant, the method yields a polynomial of degree r � 1

representing the general term of the given sequence. Consider the binomial

coefficients

(nk) ¼
n!

k!(n� k)!
, for 0 < k < n, (n0 ) ¼ 1, and otherwise (nk) ¼ 0,

where for any natural number n, n factorial, written n!, represents the

product n(n� 1)(n� 2) � � � 3 . 2 . 1 and, for consistency, 0! ¼ 1. The ex-

clamation point used to represent factorials was introduced by Christian

Kramp in 1802. The numbers, (nk), are called the binomial coefficients

because of the role they play in the expansion of (aþ b)n ¼Pn
k¼0(

n
k)a

n�k bk . For example,

(aþ b)3 ¼ (30)a
3b0 þ (31)a

2b1 þ (32)a
1b2 þ (33)a

0b3

¼ a3 þ 3a2bþ 3ab2 þ b3:

Denote the ith differences, ˜i, of the sequence ak , akþ1, akþ2, . . . by

di1, di2, di3, . . . , and generate the following finite difference array:

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

an ak akþ1 akþ2 akþ3 akþ4 akþ5 akþ6

˜1 d11 d12 d13 d14 d15 d16
˜2 d21 d22 d23 d24 d25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˜r d r1 d r2 d r3 d r4

If the r th differences d r1, d r2, d r3, . . . are equal, then working backwards

and using terms in the leading diagonal each term of the sequence ak ,

akþ1, akþ2, . . . can be determined. More precisely, the finite difference

array for the sequence bn ¼ (n�k
m ), for m ¼ 0, 1, 2, 3, . . . , r,

n ¼ k, k þ 1, k þ 2, . . . , and a fixed value of k, has the property that the

mth differences, ˜m, consist of all ones and, except for dm1 ¼ 1 for

1 < m < r, the leading diagonal is all zeros. For example, if m ¼ 0, the

finite difference array for an ¼ (n�k
0 ) is given by

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

bn 1 1 1 1 1 1 1

˜1 0 0 0 0 0 0

8 The intriguing natural numbers
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If m ¼ 1, the finite difference array for an ¼ (n�k
1 ) is given by

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

bn 0 1 2 3 4 5 6

˜1 1 1 1 1 1 1

˜2 0 0 0 0 0 0

If m ¼ 2, the finite difference array for an ¼ (n�k
2 ) is given by

n k k þ 1 k þ 2 k þ 3 k þ 4 k þ 5 k þ 6

bn 0 0 1 3 6 10 15

˜1 0 1 2 3 4 5

˜2 1 1 1 1 1 1

˜3 0 0 0 0 0

The leading diagonals of the finite difference array for the sequence ak ,

akþ1, akþ2, . . . , and the array defined by

ak(
n�k
0 )þ d11(

n�k
1 )þ d21(

n�k
2 ) þ � � � þ d r1(

n�k
r )

are identical. Therefore,

an ¼ ak(
n�k
0 )þ d11(

n�k
1 )þ d21(

n�k
2 ) þ � � � þ d r1(

n�k
r ),

for n ¼ k, k þ 1, k þ 2, . . . :

Example 1.1 The finite difference array for the pentagonal numbers, 1, 5,

12, 22, 35, . . . , p5 n, . . . is given by

n 1 2 3 4 5 6 . . .

p5 n 1 5 12 22 35 51 . . .

˜1 4 7 10 13 16 . . .

˜2 3 3 3 3 . . .

Our indexing begins with k ¼ 1. Therefore

p5 n ¼ 1 . (n�1
0 )þ 4 . (n�1

1 )þ 3 . (n�1
2 ) ¼ 1þ 4(n� 1)þ 3

(n� 1)(n� 2)

2

¼ 3n2 � n

2
:

A more convenient way to determine the general term of sequences with

finite differences is the following. Since the second differences of the

pentagonal numbers sequence is constant, consider the sequence whose

general term is f (n) ¼ an2 þ bnþ c, whose first few terms are given by

f (1) ¼ aþ bþ c, f (2) ¼ 4aþ 2bþ c, f (3) ¼ 9aþ 3bþ c, f (4) ¼
16aþ 4bþ c, and whose finite differences are given by

1.1 Polygonal numbers 9
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aþ bþ c 4aþ 2bþ c 9aþ 3bþ c 16aþ 4bþ c . . .
3aþ b 5aþ b 7aþ b . . .
2a 2a . . .

Matching terms on the first diagonal of the pentagonal differences with

those of f (n) yields

2a ¼ 3

3aþ b ¼ 4

aþ bþ c ¼ 1:

Hence, a ¼ 3
2
, b ¼ �1

2
, c ¼ 0, and f (n) ¼ 3

2
n2 � 1

2
n.

From Table 1.2, Nicomachus infers that the sum of the nth square and

the (n� 1)st triangular number equals the nth pentagonal number, that is,

for any positive integer n, p5 n ¼ sn þ t n�1. For example, if n ¼ 6,

s6 þ t5 ¼ 36þ 15 ¼ 51 ¼ p56. He also deduces from Table 1.2 that three

times the (n� 1)st triangular number plus n equals the nth pentagonal

number. For example, for n ¼ 9, 3 . t8 þ 9 ¼ 3 . 36þ 9 ¼ 117 ¼ p59.

In general, the m-gonal numbers, for m ¼ 3, 4, 5, . . . , where m refers

to the number of sides or angles of the polygon in question, are given by

the sequence of numbers whose first two terms are 1 and m and whose

second common differences equal m� 2. Using the finite difference

method outlined previously we find that pm
n ¼ (m� 2)n2=2� (m �

4)n=2, where pmn denotes the nth m-gonal number. Triangular numbers

correspond to 3-gonal numbers, squares to 4-gonal numbers, and so forth.

Using Table 1.2, Nicomachus generalizes one of his previous observations

and claims that pmn þ p3 n�1 ¼ pmþ1
n, where p3 n represents the nth

triangular number.

The first translation of the Introduction into Latin was done by Apuleius

of Madaura shortly after Nicomachus’s death, but it did not survive.

However, there were a number of commentaries written on the Introduc-

tion. The most influential, On Nicomachus’s Introduction to Arithmetic,

was written by the fourth century mystic philosopher Iamblichus of Chalcis

in Syria. The Islamic world learned of Nicomachus through Thabit ibn

Qurra’s Extracts from the Two Books of Nicomachus. Thabit, a ninth

century mathematician, physician, and philosopher, worked at the House

of Wisdom in Baghdad and devised an ingenious method to find amicable

numbers that we discuss in Chapter 4. A version of the Introduction was

written by Boethius [beau EE thee us], a Roman philosopher and statesman

who was imprisoned by Theodoric King of the Ostrogoths on a charge of

conspiracy and put to death in 524. It would be hard to overestimate the

influence of Boethius on the cultured and scientific medieval mind. His De
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