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Introduction

1.1. what’s in the book?

This book is about using mathematics to think about how humans (and
other animals) behave. We are hardly surprised to find that mathematics
helps us when we deal with physical things. Although relatively few
people can do the relevant mathematics, no one is surprised to find out
that buildings are built, airplanes are designed, and ships and cars fueled
according to some mathematical principle. But people? Or, for that
matter, dogs and birds? Does mathematics have a place in understanding
how animate, sentient beings move about, remember, quarrel, live with a
spouse, or decide to invest in one venture and not another?

I think it does, and I am going to try to convince you. To make things
easier to read, I will use the term mathematical modeling to refer to the
process of analyzing behavior using the rules of mathematics. Just what
this means will be described in more detail later. For now, though, just
think of ‘‘mathematical modeling’’ as a shorthand for the clumsier term
‘‘using mathematics to study behavior.’’ I want to convince you, the
reader, that mathematical modeling is often a very good thing to do.

I will proceed by example. The chapters in this book present problems
in the social and behavioral sciences, and then show how mathematical
modeling has helped us to understand them. Before plunging into the
details, though, I want to step back and look at the bigger picture.

Mathematical modeling is a specialization of a bigger idea, using
formal analyses to guide actions. This bigger idea has an opponent: the
use of memory, pattern recognition, analogies, and informal argument to
make a decision. This opponent is no straw person; it’s the legendary
800-pound gorilla. Modern psychological research has shown that our
brains, and hence our minds, are very well organized to recognize a
new situation as ‘‘like what we’ve seen before,’’ and then to use rough-
and-ready reasoning to decide what to do. To be fair, we are much
better than other animals in our ability to follow abstract, formal
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arguments . . . but compared to a computer program for deductive rea-
soning, we aren’t all that good.

The reason computers don’t run the world, yet, is that reasoning based
on memory and analogy works quickly and often works well. This is
especially true when we are dealing with concrete, perceivable situa-
tions. Formal analysis shows its strength when we deal with abstractions.
It’s roughly the difference between deciding which steak to buy at the
grocery store and deciding whether or not to invest in beef futures on the
Chicago Stock Exchange.

For most of human existence people dealt with beef, not beef futures.
Until very recently people could spend their lives moving, lifting, cut-
ting, and building things. While abstract ideas certainly were around,
they were not part of very many people’s daily affairs. In the Industrial
Revolution abstract ideas began to be more important than they had
been. The intellectual pace quickened further in the late twentieth cen-
tury, so much so that the economist Robert Reich has called the modern
era the age of the ‘‘symbol analyst.’’1 What he meant by this is that today,
an ever-increasing number of people earn their living by manipulating
symbols standing for things rather than the things themselves. Issues are
decided by analysis rather than memory and pattern recognition. It is
becoming more and more important to understand formal analysis, and
the ultimate of that analysis, mathematical modeling. A major purpose of
this book is to help readers reach such understanding by looking at a
variety of models, based on relatively simple mathematics, that have
been used to explore social and behavioral issues.

To kick things off, let’s take a quick look at some examples showing
the advantages and disadvantages of mathematical modeling.

1.2. some examples of formal and informal thinking

In the seventeenth century, shipbuilders relied on personal experience to
guide ship design. They made drawings of what they wanted without
analysis. Skilled laborers then put things together using the drawing as a
guide. This method was used in Sweden in 1628 to build the 100-gun
Vasa, the largest warship of its time. When the King of Sweden saw the
plans he had the gut feeling that the ship would be still more powerful if
it had an extra gun deck on top. In seventeenth century Sweden, what
the king wanted, the king got. The extra gun deck went on forthwith. The
Vasa sailed the seas, or to be precise, Stockholm harbor, for 30 minutes.
Then it capsized. Apparently the king’s idea wasn’t all that good.

This example does not mean that ‘‘gut’’ ideas, based on experience,
are always wrong. In classic times, the Romans built their buildings in

1 Reich (1991).
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very much the same way as the Vasa was designed. The magnificent
Colosseum of Rome, built about a.d. 65, is standing today.

Today every large engineering project relies on mathematical analysis.
Indeed, we are not bothered by a decision to let mathematical
analysis override our intuitions. On the face of it, the idea that a modern
jumbo jet could get off the ground is ridiculous. That was my reaction the
first time I saw a Boeing 747, the first of the jumbo jets. Nevertheless, I
was not surprised when I read that the 747’s test flight went off without a
hitch. Why wasn’t I surprised? Because I knew that careful mathematical
analyses had shown that the 747 would fly. I trusted the mathematics. So
do the millions of people who fly every week.

On the other hand, sometimes we are a bit too smug about our abilities
to analyze things. This is shown by examples from the ancient and
modern art of barrel making.

Back in the seventeenth century, employees of the Prince-Bishop of
Würzburg were entitled to a wine ration from His Eminence’s cellars.
There were complaints that the Prince-Bishop played favorites when he
chose the quality of wine to be distributed. He decided to show that these
rumors were untrue by constructing a single wine cask, with a dia-
meter of more than 10 meters. Henceforth everyone drew their ration
from the same barrel. The barrel still existed in 2000. (I’ve seen it.) That is
impressive, as the Prince-Bishop’s barrel makers worked by intuition and
custom, just like the designers of the Vasa.

Since the nineteenth century, large barrels like this have been built to
engineering design, using our knowledge of metal strength, expansion
rates, and so forth. And . . .

In the early years of the twentieth century, a massive tank, 15 meters
high, was built to store molasses in a factory in Boston. In January 1919
the tank burst. It released a 10-meter wall of molasses, 2 million gallons,
on the streets of Boston. Molasses is said to be slow, but if a stream has
enough mass behind it, it can push right along. The initial speed of the
molasses wave was probably around 50 km/hr. Sadly, 21 people died
because they could not outrun it.

The problemwas a design fault. The bolts and straps that held the barrel
together were made of different metals. On the day of the accident the
temperature went from�17� toþ9� C (2� to 48� F). Alas, the designers had
forgotten to allow for different rates of expansion. The result was the
stickiestmess inhistory. If it hadnotbeen for the casualties, thiswouldhave
been just plain funny.

There are probably thousands of examples where some physical
construction or manipulation was made possible by mathematical ana-
lysis, and for every thousand of these examples, possibly 10 or 12 where
the analysis went wrong. Today the balance is clearly on the side of
analysis for physical systems, provided that we use a bit of caution. This
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is the result of centuries of study in which some of the greatest minds of
our species (Euclid, Leonardo, Galileo, Descartes, Newton, and Einstein,
to mention a few) developed and applied mathematical analyses to the
study of the physical world. Now what about the social world?

1.3. a bit of history

The idea of applying mathematical analyses to the social world is an old
one. The very first recorded use of arithmetic, in ancient Assyria, was to
solve an economic problem. Assyrian merchants wanted to keep track of
goods that were not immediately accessible for inspection. A clay tablet
recovered from Assyrian ruins, when translated, said roughly:

I have paid your agents three minas of silver, so that they may purchase lead for
your activities here. Now, if you are still my brother, send me the money owed by
courier.2

This is clearly mathematics, for it illustrates the use of a medium of
exchange, silver, to equate the values of other goods and services. Other
tablets from the same era refer to the use of precious metals to value
sheep, cattle, and land.

The next example illustrates a more sophisticated use of business
mathematics. About 2,000 years later, in the eleventh century, the
Spanish hero Ruy Diaz de Bivar (El Cid) needed cash to finance a cam-
paign against the Moors. He sent Martin Antolı́nez, a nobleman of
Burgos, to negotiate a loan from two bankers of that city. Three of the
topics for negotiation were, in modern terms, the appropriate surety that
El Cid had to put up to secure a loan of 600 marks, the fee that the
bankers were to receive for the use of their money, and, interestingly, the
finder’s fee to be paid to Antolı́nez. He got 5%, which in modern terms
would not be a bad commission. We find the echoes of such activity in
modern investment banking and arbitrage.3

The Moors against whom El Cid fought were representatives of the
sophisticated Arab-Iranian-Mogul civilization that flourished from
roughly the eighth until the fifteenth century. Classical Islam’s con-
tribution to mathematics was immense. The number system we use
today, Arabic numbers (which they probably borrowed from India) is well
known. Arabic and Iranian scholars also developed the modern concept
of algebra. These ideas could be considered contributions to pure
mathematics, although clearly much of our applied mathematics would
be impossible without them.

2 Gullberg (1997).
3 Anonymous ([1100s] 1959), El Poema de mio Cid, trans. W. S. Merwin (London: Dent).
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Arab scholars of this time also pioneered in introducing mathematical
concepts into everyday life. They developed the concept of insurance,
which extends investment to the assessment of risk. Insurance is, as we
shall see, mathematically virtually identical to gambling, even though it
is psychologically quite different. The latter topic caught the fancy of the
Europeans. Some of the greatest mathematical minds of the Enlight-
enment, including Pascal and the Bernoulli brothers, were commissioned
to explore strategies for winning gambling games.

In the last two centuries there has been an explosion in the use of
modeling to guide our thinking about human affairs. Some of the most
interesting cases occur when a mathematical model used to solve a
problem in one field is adapted to solve problems in a totally different
field. Diagnostic radiologists (physicians who specialize in the inter-
pretation of physiological images, from X rays to magnetic resonance
imaging) (MRI) are keenly aware that they can never be certain of a
diagnosis, and so must consider both the image they see and the costs of
two types of misdiagnoses: false positives (e.g., saying that an organ is
cancerous when it is not) and false negatives (failing to spot a tumor).
The analytic techniques used to evaluate how well a diagnostic radi-
ologist is doing were developed during World War II as an aid in
hunting submarines.

Now, let’s take a very different example. In December of 2002 the
New York Times published an article about the reintroduction of North
American wolves into the Yellowstone Park area. According to this
article, wildlife biologists believed that in the Yellowstone region a
population of 30 breeding pairs of wolves would be sufficient to ensure
continuation of the wolf population. Why did they believe that? Because
mathematical modeling of wolf population dynamics established that if
the number of pairs is greater than 30, the probability that the population
level will ever go to zero is acceptably low.

I have been talking about ‘‘mathematical modeling’’ without saying
exactly what it is. I will now illustrate modeling with a famous physical
example, explain it, and look at the general principles it illustrates. In the
following chapters the same principles will be applied to problems in
economics, ecology, epidemiology, psychology, sociology, and the neu-
rosciences. The topics differ, the models differ, the mathematics differ,
but the principles remain the same.

1.4. how big is the earth? eratosthenes’ solution

The idea that Columbus showed that the world is round is simply bunk.
Columbus conducted a long voyage into an unknown region, and
returned. He could have made his voyage on a disk, if the end of the
Earth was somewhere to the west of the Americas. The Spanish court
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never entertained this idea, for neither Columbus nor the Spanish court
believed that the world was flat. Three hundred years before Christ was
born, the Hellenic Greeks had argued for a spherical Earth, based on
(among other things) the observation that ships disappear from sight hull
first when they ‘‘sail over the horizon.’’ If the ship were sailing on a flat
surface its optical image might be diminished as it withdrew, due to
limits on sight, and might eventually disappear, but it would do so
symmetrically rather than hull first.

The Greeks went well beyond presenting a logical argument for a
spherical Earth. Eratosthenes of Cyrene (274–196 b.c.e), the librarian of
Alexandria, used a mathematical model to measure the circumference of
the Earth. His reasoning and experiments are worth careful study,
for they illustrate the principles behind our use of mathematics today.
Furthermore, Eratosthenes’ principles are as applicable to economic and
psychological models today as they were to the geographic model he
worked with 2,300 years ago.4

To understand what Eratosthenes did, we first have to look at what his
predecessor Euclid (330–275 b.c.e.?) had done. Euclid dealt in pure
mathematics. He postulated several properties of an abstract world
composed of straight lines and points, our modern Euclidean space.
Then, in one of the most famous exercises in logic ever written, he used
his postulates to prove theorems about the relation of angles, lines, and
arcs in that space.

On the basis of Euclid’s work, Eratosthenes knew that if you bisect a
sphere with a plane, then the cross section of the sphere that cuts the
plane is a circle whose center is the center of the sphere. (There is a
fancier way to say this; the locus of all points on both the sphere and the
plane is a circle.) In the special case of the Earth (Figure 1-1), a subset of
these circles consists of (a) all north-south polar circumnavigations of the
Earth through the poles (i.e., along lines of longitude, switching lines
only at a pole) and (b) the equator.

The resulting circle is shown in Figure 1-2, which also shows two
points on the circumference of the circle. These correspond either to two
points on the equator or two points on the same line of longitude (on the
same north-south line from pole to pole.) Therefore, if you want to
measure the length of the equator, it is sufficient to measure the length of
a polar circumnavigation.

A mathematical model for doing this is shown in Figure 1-2. The
figure shows two points, A and S, on the circumference, and a point C at

4 Many books on the history of mathematics describe Eratosthenes’ reasoning. Historians
differ as to whether Eratosthenes was brilliant or lucky. His contemporaries seem to have
had similarly mixed views of his accomplishments. My account is based largely on the
account in Gullberg (1997).
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the center of the circle, which is also the center of the Earth. Eratosthenes
reasoned that the fraction of the circle’s circumference that lies on the arc
AS is equal to the fraction of the angular measurement of the circle (360�

in modern notation) contained in the angle fi between lines CA and CS.
Translated back into the original problem,

fi

360�
¼ arc ASð Þ

Cr:

Cr ¼ arc ASð Þ � 360
�

fi

ð1-1Þ

where Cr stands for circumference.

figure 1-1. The first step in Eratosthones’ reasoning. If the Earth is a sphere, the
equator and any line of longitude can be thought of as points on a circle whose
center point is the center of the Earth. All these circles have the same
circumference.

A

S

C

α

figure 1-2. The second step in Eratosthenes‘ reasoning. Point C is the center of the
circle. If the angle fi, at point C, and the length of the arc AS are known, the
circumference of the circle can be calculated, using equation (1-1).
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Eratosthenes reasoned that if he could find appropriate points A and S
on the same line of longitude, and measure angle fi, then the length of the
Earth’s equator could be found. Unfortunately, angle fi is at the center of
the Earth, ruling out direct measurement. This brings us to the third step
in Eratosthenes’ reasoning.

The argument is shown in Figure 1-3, which should be examined
carefully. Eratosthenes assumed that the Sun’s rays are parallel to each
other. (This is true if the Earth is much smaller than the Sun, as it is, or if
the Sun is very far away, which it is.) Given this assumption, the angle
between point A and S, measured at the center of the Earth, C, can be
found if we can find two locations on the same longitude (i.e., one
directly south of the other). If the Sun is directly overhead at one point, S,
(at an angle of incidence of 0�) and the Sun strikes the other point, A, at
an angle of incidence of fi degrees at exactly the same moment, then the
angle between the two, measured from the center of the Earth, is also fi.
The mathematical argument is shown in Figure 1-3. I urge the reader to
examine it carefully.

A

S

S*

S**

A*

α

α

C

figure 1-3. The third step in Eratosthenes’ reasoning. Let lines AS** and SS* be
parallel lines (rays of sunlight) and let A and S be two points on a circle with
center C. Line SC is an extension of line SS* because the Sun is directly overhead
at point S, and so the Sun’s rays point directly down toward the center of the
Earth. If A* is any point on a line perpendicular to the Earth’s surface at point A,
then line A*A can also be continued by line AC, which terminates at the center of
the Earth. However, line A*A is not parallel to S*A because the Sun is not directly
overhead at point A. Therefore, by Euclid’s theorem for alternate angles, angle
A*AS**¼ angleACS¼fi. Angle A*AS** is on the Earth’s surface, and so it can be
measured.
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At this point Eratosthenes had connected his model to reality by
expressing it in measurements that could be taken. This can be con-
trasted with a measure that required, say, suspending an instrument in
the sky at a known height, and then measuring the angle between
locations using that instrument. We can do this today using satellites and
radar-ranging techniques, but the technology was not available to
Eratosthenes!

The problem now shifts from one of having a model identifying the
measures that need to be made to actually making the measurements.
Before Eratosthenes’ solution is presented, let us take a look at another
problem that he, and every mathematical modeler after him, had to deal
with: measurement error.

In order to apply his model, Eratosthenes had to rely on measured
values of fi and arc(AS) rather than the actual values. Measurements
inevitably contain a measurement error. Therefore, any application of
equation 1-1 to measured values will be

fiþ error fið Þ
360�

¼ arc ASð Þ þ error arc ASð Þð Þ
Cr

ð1-2Þ

where error(fi) and error(arc(AS)) refer to errors in measuring the angle or
the arc. The measurement errors have to be so small relative to their true
values that equation (1-2) is close enough to equation (1-1) so that the
discrepancy can be disregarded.

There is a general principle here. Application of a model is always
limited by our ability to measure the relevant variables! We will meet this
idea again, for it certainly is not unique to Eratosthenes’ model. The
instruments that he had to work with, in the way of measurements of
angles and distances, were primitive compared to what we have today.
Nevertheless, as will now be shown, he did pretty well considering that
neither lasers and radar nor statistics had been invented.

Thought question. Why did I include statistics in that list?
There is another measurement problem, timing. In order for the model

to work, the Sun has to be directly overhead at S; that is, the line CS must
be a continuation of line SS*. This happens only when the sun is directly
overhead at noon. Also, because the Earth and Sun move relative to each
other during the day, it is essential that measurements be taken at A, at
exactly the time at which the Sun is overhead at S. Unfortunately, a good
clock would not be invented until about 1,800 years later (and there
wasn’t any radio time signal, either), and so Eratosthenes faced another
problem. He solved it.

Noon, local time, is the point at which the Sun reaches its maximum
height in the sky, at that point. Therefore, if points A and S are on the
same longitude, we can make a measure at point A, at local noon, and be
sure that the Sun will be at its highest point at S at exactly that time.
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The device Eratosthenes used to measure angle fi was called a straphe.
It was basically a bowl with a needle sticking up from the middle. The
bowl was planted in the ground, with the needle sticking straight up, so
that it would be along line CA in Figure 1-3. When this was done, the
shadow of the needle would measure angle fi. This is shown in Figure 1-4.

Think about it. In Seattle, which is well north of the tropic of Cancer, at
noon on the summer solstice (June 21–22) the Sun is always to the south.
On the tropic of Cancer, however, the Sun is directly overhead at noon on
the summer solstice. Today we know that this is due to the interaction of
the Earth’s path around the Sun, the angle of inclination of the Earth’s
axis of rotation to the Sun-Earth line, and the rotation of the Earth.
Eratosthenes did not have to know this, although he may well have
known of the heliocentric theory developed by Aristarchos of Samos
(310–250 b.c.e.) a century earlier. All he needed to do was to know that
there was a particular day that marked the solstice, and that this day was
the same everywhere.

Eratosthenes next had to find two observation points for A and S. He
learned that in the city of Syene (modern Aswan), on the Nile to the
south of Alexandria, the Sun shone at the bottom of a vertical well at
noon on the summer solstice. This implied that Syene was on the tropic

Sun

Shadow
area

figure 1-4. The straphe was a device used in the Hellenistic period to measure
the angle of the Sun. The U-shaped base piece is marked in angular measures.
The shaded area indicates how high the Sun is above the horizon. The point
at which the Sun is at its height is always local noon. Whether or not the angle
is zero, however, depends upon the day and the latitude. For all points on the
tropic of Cancer, the Sun is immediately overhead at local noon on the summer
solstice.
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