Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1 Fundamentals of Rotating Fluids</td>
<td>1</td>
</tr>
<tr>
<td>1 Basic Concepts and Equations for Rotating Fluids</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Equations of Motion in Rotating Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.3 The Heat Equation</td>
<td>6</td>
</tr>
<tr>
<td>1.4 The Boussinesq Equations</td>
<td>7</td>
</tr>
<tr>
<td>1.5 The Kinetic Energy Equation</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Taylor–Proudman Theorem and Thermal Wind Equation</td>
<td>11</td>
</tr>
<tr>
<td>1.7 A Unified Approach</td>
<td>13</td>
</tr>
</tbody>
</table>

Part 2 Inertial Waves in Uniformly Rotating Systems	15		
2 Introduction	17		
2.1 Formulation	17		
2.2 Frequency Bound $	\sigma	\leq 1$	19
2.3 Special Cases: $\sigma = 0$ and $\sigma = \pm 1$	21		
2.4 Orthogonality	23		
2.5 The Poincaré Equation	25		
3 Inertial Modes in Rotating Narrow-gap Annuli	27		
3.1 Formulation	27		
3.2 Axisymmetric Inertial Oscillations	29		
3.3 Geostrophic Mode	31		
3.4 Non-axisymmetric Inertial Waves	32		
4 Inertial Modes in Rotating Cylinders	35		
4.1 Formulation	35		
4.2 Axisymmetric Inertial Oscillations	36		
4.3 Geostrophic Mode	41		
4.4 Non-axisymmetric Inertial Waves	43		
5 Inertial Modes in Rotating Spheres	50		
5.1 Formulation	50		
Contents

5.2 Geostrophic Mode 52
5.3 Equatorially Symmetric Modes: $m = 0$ 54
5.4 Equatorially Symmetric Modes: $m \geq 1$ 60
5.5 Equatorially Antisymmetric Modes: $m = 0$ 71
5.6 Equatorially Antisymmetric Modes: $m \geq 1$ 75
5.7 An Exact Nonlinear Solution in Rotating Spheres 81

6 Inertial Modes in Rotating Oblate Spheroids 83
6.1 Formulation 83
6.2 Geostrophic Mode 91
6.3 Equatorially Symmetric Modes: $m = 0$ 92
6.4 Equatorially Symmetric Modes: $m \geq 1$ 94
6.5 Equatorially Antisymmetric Modes: $m = 0$ 96
6.6 Equatorially Antisymmetric Modes: $m \geq 1$ 99
6.7 An Exact Nonlinear Solution in Rotating Spheroids 102

7 A Proof of Completeness of Inertial Modes in Rotating Channels 105
7.1 Significance of the Completeness of Inertial Modes 105
7.2 Bessel’s Inequality and Parseval’s Equality 107
7.3 A Proof of the Completeness Relation 109

8 Indications of Completeness of Inertial Modes in Rotating Spheres 118
8.1 Seeking Signs of Completeness 118
8.2 A Proof of the Vanishing Dissipation-type Integral 119

Part 3 Precession and Libration in Non-uniformly Rotating Systems 127

9 Fluid Motion in Precessing Narrow-gap Annuli 138
10.1 Formulation 138
10.2 Conditions for Resonance 141
10.3 Asymptotic Solution at Resonance with $\Gamma = \sqrt{3}$ 142
10.4 Asymptotic Solution at Resonance with $\Gamma = 1/\sqrt{3}$ 152
10.5 Linear Numerical Analysis 155
10.6 Nonlinear Direct Numerical Simulation 157
10.7 Comparison: Analytical vs. Numerical 159
10.8 A Byproduct: The Viscous Decay Factor 160

11 Fluid Motion in Precessing Circular Cylinders 164
11.1 Formulation 164
11.2 Conditions for Resonance 166
11.3 Divergence of the Inviscid Precessing Solution 168
11.4 General Asymptotic Solution for $0 < E_k \ll 1$ 172
Table of Contents

11.5 Asymptotic Solution at Primary Resonances 180
11.6 Linear Numerical Analysis Using Spectral Methods 187
11.7 Nonlinear Properties of Weakly Precessing Flow 190
11.8 Numerical Simulation Using Finite Element Methods 193
11.9 Nonlinear Precessing Flow at Primary Resonances 195
11.9.1 Decomposition of Nonlinear Flow into Inertial Modes 195
11.9.2 The Structure of Nonlinear Precessing Flow 199
11.9.3 Search for Triadic Resonance 205
11.10 A Byproduct: The Viscous Decay Factor 209

12 Fluid Motion in Precessing Spheres 213
12.1 Formulation 213
12.2 Asymptotic Expansion and Resonance 215
12.3 Asymptotic Solution 217
12.4 Nonlinear Direct Numerical Simulation 224
12.5 Comparison: Analytical vs. Numerical 226
12.6 Nonlinear Effects: Mean Azimuthal Flow 227
12.7 A Byproduct: The Viscous Decay Factor 229

13 Fluid Motion in Longitudinally Librating Spheres 231
13.1 Formulation 231
13.2 Asymptotic Solutions 232
13.2.1 Why Resonance Cannot Occur 232
13.2.2 Asymptotic Analysis 233
13.2.3 Three Fundamental Modes Excited 239
13.3 Linear Numerical Solution 244
13.4 Nonlinear Direct Numerical Simulation 246

14 Fluid Motion in Precessing Oblate Spheroids 250
14.1 Formulation 250
14.2 Inviscid Solution 252
14.3 Exact Nonlinear Solution 258
14.4 Viscous Solution 260
14.5 Properties of Nonlinear Precessing Flow 268
14.6 A Byproduct: The Viscous Decay Factor 273

15 Fluid Motion in Latitudinally Librating Spheroids 276
15.1 Formulation 276
15.2 Analytical Solution: Non-resonant Librating Flow 279
15.3 Analytical Solution: Resonant Librating Flow 283
15.4 Nonlinear Direct Numerical Simulation 293
15.5 Comparison: Analytical vs. Numerical 293

Part 4 Convection in Uniformly Rotating Systems 297

16 Introduction 299
16.1 Rotating Convection vs. Precession/Libration 299
Contents

16.2 Key Parameters for Rotating Convection 300
16.3 Rotational Constraint on Convection 302
16.4 Types of Rotating Convection 303
16.4.1 Viscous Convection Mode 303
16.4.2 Inertial Convection Mode 305
16.4.3 Transitional Convection Mode 306
16.5 Convection in Various Rotating Geometries 307
16.5.1 Rotating Annular Channels 307
16.5.2 Rotating Circular Cylinders 308
16.5.3 Rotating Spheres or Spherical Shells 309
17 Convection in Rotating Narrow-gap Annuli 313
17.1 Formulation 313
17.2 A Finite-difference Method for Nonlinear Convection 316
17.3 Stationary Viscous Convection 318
17.3.1 Governing Equations 318
17.3.2 Asymptotic Solution for $\Gamma(Ta)^{1/6} \ll O(1)$ 320
17.3.3 Asymptotic Solution for $\Gamma(Ta)^{1/6} = O(1)$ 325
17.3.4 Numerical Solution Using a Galerkin-tau Method 327
17.3.5 Comparison: Analytical vs. Numerical 329
17.3.6 Nonlinear Properties of Stationary Convection 330
17.4 Oscillatory Viscous Convection 332
17.4.1 Governing Equations 332
17.4.2 Symmetry between Two Different Oscillatory Solutions 334
17.4.3 Asymptotic Solutions Satisfying the Boundary Condition 335
17.4.4 Comparison: Analytical vs. Numerical 343
17.4.5 Comparison with an Unbounded Rotating Layer 348
17.4.6 Nonlinear Properties with $\Gamma = O(Ta^{-1/6})$ 352
17.4.7 Nonlinear Properties with $\Gamma \gg O(Ta^{-1/6})$ 354
17.5 Viscous Convection with Curvature Effects 356
17.5.1 Onset of Viscous Convection 356
17.5.2 Nonlinear Properties of Viscous Convection 359
17.6 Inertial Convection: Non-axisymmetric Solutions 366
17.6.1 Asymptotic Expansion 366
17.6.2 Non-dissipative Thermal Inertial Wave 367
17.6.3 Asymptotic Solution with Stress-free Condition 369
17.6.4 Asymptotic Solution with No-slip Condition 373
17.6.5 Numerical Solution Using a Galerkin Spectral Method 383
17.6.6 Comparison: Analytical vs. Numerical 385
17.6.7 Nonlinear Properties of Inertial Convection 386
17.7 Inertial Convection: Axisymmetric Torsional Oscillation 393
Table of Contents

18 Convection in Rotating Cylinders 396

18.1 Formulation 396

18.2 Convection with Stress-free Condition 399

18.2.1 Asymptotic Solution for Inertial Convection 399
18.2.2 Asymptotic Solution for Viscous Convection 405
18.2.3 Numerical Solution Using a Chebyshev-tau Method 408
18.2.4 Comparison: Analytical vs. Numerical 410

18.3 Convection with No-slip Condition 412

18.3.1 Asymptotic Solution for Inertial Convection 412
18.3.2 Asymptotic Solution for Viscous Convection 418
18.3.3 Numerical Solution Using a Galerkin-type Method 419
18.3.4 Comparison: Analytical vs. Numerical 421
18.3.5 Effect of Thermal Boundary Condition 424
18.3.6 Axisymmetric Inertial Convection 426

18.4 Transition to Weakly Turbulent Convection 430

18.4.1 A Finite Element Method for Nonlinear Convection 430
18.4.2 Inertial Convection: From Single Inertial Mode to Weak Turbulence 431
18.4.3 Viscous Convection: From Sidewall-localized Mode to Weak Turbulence 435

19 Convection in Rotating Spheres or Spherical Shells 439

19.1 Formulation 439

19.2 Numerical Solution using Toroidal/Poloidal Decomposition 442

19.2.1 Governing Equations under Toroidal/Poloidal Decomposition 442
19.2.2 Numerical Analysis for Stress-free or No-slip Condition 444
19.2.3 Several Numerical Solutions for $0 < \varepsilon k \ll 1$ 447
19.2.4 Nonlinear Effects: Differential Rotation 452

19.3 Local Asymptotic Solution: A Small-gap Annular Model 459

19.3.1 The Local and Quasi-geostrophic Approximation 459
19.3.2 Asymptotic Relation for $0 < \varepsilon k \ll 1$ 461
19.3.3 Comparison: Asymptotic vs. Numerical 463

19.4 Global Asymptotic Solution with Stress-free Condition 464

19.4.1 Hypotheses for Asymptotic Analysis 464
19.4.2 Asymptotic Analysis for Inertial Convection 465
19.4.3 Several Analytical Solutions for Inertial Convection 470
19.4.4 Differential Rotation Cannot be Sustained by Inertial Convection 474
19.4.5 Asymptotic Analysis for Viscous Convection 476
19.4.6 Typical Asymptotic Solutions for Viscous Convection 479
19.4.7 Nonlinear Effects: Differential Rotation in Viscous Convection 481

19.5 Global Asymptotic Solution with No-slip Condition 484

19.5.1 Hypotheses for Asymptotic Analysis 484
19.5.2 Asymptotic Analysis for Inertial Convection 485
Contents

19.5.3 Several Analytical Solutions for Inertial Convection 490
19.5.4 Asymptotic Analysis for Viscous Convection 493
19.5.5 Several Asymptotic Solutions for Viscous Convection 496
19.5.6 Nonlinear Effects: Differential Rotation in Viscous Convection 497

19.6 Transition to Weakly Turbulent Convection 503
19.6.1 A Finite-Element Method for Rotating Spheres 503
19.6.2 Transition to Weak Turbulence in Rotating Spheres 504
19.6.3 A Finite Difference Method for Rotating Spherical Shells 508
19.6.4 Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells 509

Appendix A Vector Identities and Theorems 513
Appendix B Vector Definitions 514

References 516
Index 523