THEORY AND MODELING OF ROTATING FLUIDS

A systematic account of the theory and modeling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries, such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, the authors present a unified theory for three topics – thermal convection, inertial waves, and precession-driven flow – to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids.

KEKE ZHANG, professor of Geophysical and Astrophysical Fluid Dynamics at the University of Exeter, UK, obtained his BSc in 1982 from the University of Nanjing, China, and his MSc in 1985 and his PhD in 1987 from the University of California, Los Angeles, USA. He is a Fellow of both the American Geophysical Union and the Royal Astronomical Society. Professor Zhang has authored over 180 publications in peer-reviewed scientific journals.

XINHAO LIAO, professor of Celestial Dynamics at the Chinese Academy of Sciences, obtained his BSc in 1983 and his PhD in 1989 from the University of Nanjing.
Established in 1952, the *Cambridge Monographs on Mechanics* series has maintained a reputation for the publication of outstanding monographs, a number of which have been re-issued in paperback. The series covers such areas as wave propagation, fluid dynamics, theoretical geophysics, combustion, and the mechanics of solids. Authors are encouraged to write for a wide audience, and to balance mathematical analysis with physical interpretation and experimental data, where appropriate. Whilst the research literature is expected to be a major source for the content of the book, authors should aim to synthesise new results rather than just survey them.

A complete list of books in the series can be found at www.cambridge.org/mathematics.

**RECENT TITLES IN THIS SERIES**

*Magnetoconvection*
N. O. WEISS & M. R. E. PROCTOR

*Waves and Mean Flows (Second Edition)*
OLIVER BÜHLER

*Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Second Edition)*
PHILIP HOLMES, JOHN L. LUMLEY, GAHL BERKOOZ & CLARENCE W. ROWLEY

*Elastic Waves at High Frequencies*
JOHN G. HARRIS

*Gravity–Capillary Free-Surface Flows*
JEAN-MARC VANDEN-BROECK

*Lagrangian Fluid Dynamics*
ANDREW F. BENNETT
THEORY AND MODELING OF ROTATING FLUIDS

Convection, Inertial Waves and Precession

KEKE ZHANG
University of Exeter

XINHAO LIAO
Chinese Academy of Sciences
## Contents

**Preface**  
page xi

### Part 1    Fundamentals of Rotating Fluids  
1 Basic Concepts and Equations for Rotating Fluids  
   1.1 Introduction  
   1.2 Equations of Motion in Rotating Systems  
   1.3 The Heat Equation  
   1.4 The Boussinesq Equations  
   1.5 The Kinetic Energy Equation  
   1.6 Taylor–Proudman Theorem and Thermal Wind Equation  
   1.7 A Unified Approach  

### Part 2    Inertial Waves in Uniformly Rotating Systems  
2 Introduction  
   2.1 Formulation  
   2.2 Frequency Bound $|\sigma| \leq 1$  
   2.3 Special Cases: $\sigma = 0$ and $\sigma = \pm 1$  
   2.4 Orthogonality  
   2.5 The Poincaré Equation  
3 Inertial Modes in Rotating Narrow-gap Annuli  
   3.1 Formulation  
   3.2 Axisymmetric Inertial Oscillations  
   3.3 Geostrophic Mode  
   3.4 Non-axisymmetric Inertial Waves  
4 Inertial Modes in Rotating Cylinders  
   4.1 Formulation  
   4.2 Axisymmetric Inertial Oscillations  
   4.3 Geostrophic Mode  
   4.4 Non-axisymmetric Inertial Waves  
5 Inertial Modes in Rotating Spheres  
   5.1 Formulation
## Contents

5.2 Geostrophic Mode 52
5.3 Equatorially Symmetric Modes: \( m = 0 \) 54
5.4 Equatorially Symmetric Modes: \( m \geq 1 \) 60
5.5 Equatorially Antisymmetric Modes: \( m = 0 \) 71
5.6 Equatorially Antisymmetric Modes: \( m \geq 1 \) 75
5.7 An Exact Nonlinear Solution in Rotating Spheres 81

6 Inertial Modes in Rotating Oblate Spheroids 83
6.1 Formulation 83
6.2 Geostrophic Mode 91
6.3 Equatorially Symmetric Modes: \( m = 0 \) 92
6.4 Equatorially Symmetric Modes: \( m \geq 1 \) 94
6.5 Equatorially Antisymmetric Modes: \( m = 0 \) 96
6.6 Equatorially Antisymmetric Modes: \( m \geq 1 \) 99
6.7 An Exact Nonlinear Solution in Rotating Spheroids 102

7 A Proof of Completeness of Inertial Modes in Rotating Channels 105
7.1 Significance of the Completeness of Inertial Modes 105
7.2 Bessel’s Inequality and Parseval’s Equality 107
7.3 A Proof of the Completeness Relation 109

8 Indications of Completeness of Inertial Modes in Rotating Spheres 118
8.1 Seeking Signs of Completeness 118
8.2 A Proof of the Vanishing Dissipation-type Integral 119

Part 3 Precession and Libration in Non-uniformly Rotating Systems 127

9 Introduction 129
9.1 Non-uniform Rotation: Precession and Libration 129
9.2 Precession/Libration in Different Geometries 130
9.3 Key Parameters and Reference Frames 134
9.4 Asymptotic Expansion Without Using \( \sqrt{E_k} \) 135

10 Fluid Motion in Precessing Narrow-gap Annuli 138
10.1 Formulation 138
10.2 Conditions for Resonance 141
10.3 Asymptotic Solution at Resonance with \( \Gamma = \sqrt{3} \) 142
10.4 Asymptotic Solution at Resonance with \( \Gamma = 1/\sqrt{3} \) 152
10.5 Linear Numerical Analysis 155
10.6 Nonlinear Direct Numerical Simulation 157
10.7 Comparison: Analytical vs. Numerical 159
10.8 A Byproduct: The Viscous Decay Factor 160

11 Fluid Motion in Precessing Circular Cylinders 164
11.1 Formulation 164
11.2 Conditions for Resonance 166
11.3 Divergence of the Inviscid Precessing Solution 168
11.4 General Asymptotic Solution for \( 0 < E_k \ll 1 \) 172
Contents

11.5 Asymptotic Solution at Primary Resonances 180
11.6 Linear Numerical Analysis Using Spectral Methods 187
11.7 Nonlinear Properties of Weakly Precessing Flow 190
11.8 Numerical Simulation Using Finite Element Methods 193
11.9 Nonlinear Precessing Flow at Primary Resonances 195
  11.9.1 Decomposition of Nonlinear Flow into Inertial Modes 195
  11.9.2 The Structure of Nonlinear Precessing Flow 199
  11.9.3 Search for Triadic Resonance 205
11.10 A Byproduct: The Viscous Decay Factor 209

12 Fluid Motion in Precessing Spheres 213
  12.1 Formulation 213
  12.2 Asymptotic Expansion and Resonance 215
  12.3 Asymptotic Solution 217
  12.4 Nonlinear Direct Numerical Simulation 224
  12.5 Comparison: Analytical vs. Numerical 226
  12.6 Nonlinear Effects: Mean Azimuthal Flow 227
  12.7 A Byproduct: The Viscous Decay Factor 229

13 Fluid Motion in Longitudinally Librating Spheres 231
  13.1 Formulation 231
  13.2 Asymptotic Solutions 232
    13.2.1 Why Resonance Cannot Occur 232
    13.2.2 Asymptotic Analysis 233
    13.2.3 Three Fundamental Modes Excited 239
  13.3 Linear Numerical Solution 244
  13.4 Nonlinear Direct Numerical Simulation 246

14 Fluid Motion in Precessing Oblate Spheroids 250
  14.1 Formulation 250
  14.2 Inviscid Solution 252
  14.3 Exact Nonlinear Solution 258
  14.4 Viscous Solution 260
  14.5 Properties of Nonlinear Precessing Flow 268
  14.6 A Byproduct: The Viscous Decay Factor 273

15 Fluid Motion in Latitudinally Librating Spheroids 276
  15.1 Formulation 276
  15.2 Analytical Solution: Non-resonant Librating Flow 279
  15.3 Analytical Solution: Resonant Librating Flow 283
  15.4 Nonlinear Direct Numerical Simulation 293
  15.5 Comparison: Analytical vs. Numerical 293

Part 4 Convection in Uniformly Rotating Systems 297
16 Introduction 299
  16.1 Rotating Convection vs. Precession/Libration 299
Contents

16.2 Key Parameters for Rotating Convection 300
16.3 Rotational Constraint on Convection 302
16.4 Types of Rotating Convection 303
16.4.1 Viscous Convection Mode 303
16.4.2 Inertial Convection Mode 305
16.4.3 Transitional Convection Mode 306
16.5 Convection in Various Rotating Geometries 307
16.5.1 Rotating Annular Channels 307
16.5.2 Rotating Circular Cylinders 308
16.5.3 Rotating Spheres or Spherical Shells 309
17 Convection in Rotating Narrow-gap Annuli 313
17.1 Formulation 313
17.2 A Finite-difference Method for Nonlinear Convection 316
17.3 Stationary Viscous Convection 318
17.3.1 Governing Equations 318
17.3.2 Asymptotic Solution for $\Gamma(Ta)^{1/6} \ll O(1)$ 320
17.3.3 Asymptotic Solution for $\Gamma(Ta)^{1/6} = O(1)$ 325
17.3.4 Numerical Solution Using a Galerkin-tau Method 327
17.3.5 Comparison: Analytical vs. Numerical 329
17.3.6 Nonlinear Properties of Stationary Convection 330
17.4 Oscillatory Viscous Convection 332
17.4.1 Governing Equations 332
17.4.2 Symmetry between Two Different Oscillatory Solutions 334
17.4.3 Asymptotic Solutions Satisfying the Boundary Condition 335
17.4.4 Comparison: Analytical vs. Numerical 343
17.4.5 Comparison with an Unbounded Rotating Layer 348
17.4.6 Nonlinear Properties with $\Gamma = O(Ta^{-1/6})$ 352
17.4.7 Nonlinear Properties with $\Gamma \gg O(Ta^{-1/6})$ 354
17.5 Viscous Convection with Curvature Effects 356
17.5.1 Onset of Viscous Convection 356
17.5.2 Nonlinear Properties of Viscous Convection 359
17.6 Inertial Convection: Non-axisymmetric Solutions 366
17.6.1 Asymptotic Expansion 366
17.6.2 Non-dissipative Thermal Inertial Wave 367
17.6.3 Asymptotic Solution with Stress-free Condition 369
17.6.4 Asymptotic Solution with No-slip Condition 373
17.6.5 Numerical Solution Using a Galerkin Spectral Method 383
17.6.6 Comparison: Analytical vs. Numerical 385
17.6.7 Nonlinear Properties of Inertial Convection 386
17.7 Inertial Convection: Axisymmetric Torsional Oscillation 393
## Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Convection in Rotating Cylinders</td>
<td>ix</td>
</tr>
<tr>
<td>18.1</td>
<td>Formulation</td>
<td>396</td>
</tr>
<tr>
<td>18.2</td>
<td>Convection with Stress-free Condition</td>
<td>399</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Asymptotic Solution for Inertial Convection</td>
<td>399</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Asymptotic Solution for Viscous Convection</td>
<td>405</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Numerical Solution Using a Chebyshev-tau Method</td>
<td>408</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Comparison: Analytical vs. Numerical</td>
<td>410</td>
</tr>
<tr>
<td>18.3</td>
<td>Convection with No-slip Condition</td>
<td>412</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Asymptotic Solution for Inertial Convection</td>
<td>412</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Asymptotic Solution for Viscous Convection</td>
<td>418</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Numerical Solution Using a Galerkin-type Method</td>
<td>419</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Comparison: Analytical vs. Numerical</td>
<td>421</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Effect of Thermal Boundary Condition</td>
<td>424</td>
</tr>
<tr>
<td>18.3.6</td>
<td>Axisymmetric Inertial Convection</td>
<td>426</td>
</tr>
<tr>
<td>18.4</td>
<td>Transition to Weakly Turbulent Convection</td>
<td>430</td>
</tr>
<tr>
<td>18.4.1</td>
<td>A Finite Element Method for Nonlinear Convection</td>
<td>430</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Inertial Convection: From Single Inertial Mode to Weak Turbulence</td>
<td>431</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Viscous Convection: From Sidewall-localized Mode to Weak Turbulence</td>
<td>435</td>
</tr>
<tr>
<td>19</td>
<td>Convection in Rotating Spheres or Spherical Shells</td>
<td>439</td>
</tr>
<tr>
<td>19.1</td>
<td>Formulation</td>
<td>439</td>
</tr>
<tr>
<td>19.2</td>
<td>Numerical Solution using Toroidal/Poloidal Decomposition</td>
<td>442</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Governing Equations under Toroidal/Poloidal Decomposition</td>
<td>442</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Numerical Analysis for Stress-free or No-slip Condition</td>
<td>444</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Several Numerical Solutions for $0 &lt; E_k \ll 1$</td>
<td>447</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Nonlinear Effects: Differential Rotation</td>
<td>452</td>
</tr>
<tr>
<td>19.3</td>
<td>Local Asymptotic Solution: A Small-gap Annular Model</td>
<td>459</td>
</tr>
<tr>
<td>19.3.1</td>
<td>The Local and Quasi-geostrophic Approximation</td>
<td>459</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Asymptotic Relation for $0 &lt; E_k \ll 1$</td>
<td>461</td>
</tr>
<tr>
<td>19.3.3</td>
<td>Comparison: Asymptotic vs. Numerical</td>
<td>463</td>
</tr>
<tr>
<td>19.4</td>
<td>Global Asymptotic Solution with Stress-free Condition</td>
<td>464</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Hypotheses for Asymptotic Analysis</td>
<td>464</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Asymptotic Analysis for Inertial Convection</td>
<td>465</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Several Analytical Solutions for Inertial Convection</td>
<td>470</td>
</tr>
<tr>
<td>19.4.4</td>
<td>Differential Rotation Cannot be Sustained by Inertial Convection</td>
<td>474</td>
</tr>
<tr>
<td>19.4.5</td>
<td>Asymptotic Analysis for Viscous Convection</td>
<td>476</td>
</tr>
<tr>
<td>19.4.6</td>
<td>Typical Asymptotic Solutions for Viscous Convection</td>
<td>479</td>
</tr>
<tr>
<td>19.4.7</td>
<td>Nonlinear Effects: Differential Rotation in Viscous Convection</td>
<td>481</td>
</tr>
<tr>
<td>19.5</td>
<td>Global Asymptotic Solution with No-slip Condition</td>
<td>484</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Hypotheses for Asymptotic Analysis</td>
<td>484</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Asymptotic Analysis for Inertial Convection</td>
<td>485</td>
</tr>
</tbody>
</table>
# Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.3</td>
<td>Several Analytical Solutions for Inertial Convection</td>
<td>490</td>
</tr>
<tr>
<td>19.5.4</td>
<td>Asymptotic Analysis for Viscous Convection</td>
<td>493</td>
</tr>
<tr>
<td>19.5.5</td>
<td>Several Asymptotic Solutions for Viscous Convection</td>
<td>496</td>
</tr>
<tr>
<td>19.5.6</td>
<td>Nonlinear Effects: Differential Rotation in Viscous Convection</td>
<td>497</td>
</tr>
<tr>
<td>19.6</td>
<td>Transition to Weakly Turbulent Convection</td>
<td></td>
</tr>
<tr>
<td>19.6.1</td>
<td>A Finite-Element Method for Rotating Spheres</td>
<td>503</td>
</tr>
<tr>
<td>19.6.2</td>
<td>Transition to Weak Turbulence in Rotating Spheres</td>
<td>504</td>
</tr>
<tr>
<td>19.6.3</td>
<td>A Finite Difference Method for Rotating Spherical Shells</td>
<td>508</td>
</tr>
<tr>
<td>19.6.4</td>
<td>Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>Appendix A Vector Identities and Theorems</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>Appendix B Vector Definitions</td>
<td>514</td>
</tr>
</tbody>
</table>

References 516

Index 523
Preface

Rotation plays an essential role in the structure and variation of large-scale flows taking place in the interiors, atmospheres and oceans of planets. Knowledge of common hydrodynamical processes in rotating systems constitutes a major necessary component not only in oceanography, but also in planetary and astrophysical sciences. There have been few systematic accounts of the theory of rotating fluids in the more than quarter of a century since Chandrasekhar (1961) and Greenspan (1968) wrote their classic monographs. The second edition of Greenspan’s book, Greenspan (1990), was not a major revision. Other volumes, such as the book edited by Roberts and Soward (1978), while containing some interesting articles, did not present the subject in a unified fashion. More recent books by Vanyo (1993) and Boubnov and Golitsyn (1995) mainly concentrate on experimental studies of general rotating flows. Many important developments have taken place in the study of rotating fluids and it has long been necessary to fill a significant gap in the existing literature.

Over the past several decades the subject of rotating fluids has blossomed remarkably and great strides have been made in our understanding of the topic. Not only have there been many publications on the classic applications of the theory of rotating fluids to the dynamics of atmosphere and oceans, almost exclusively dealing with thin, nearly two dimensional spherical layers of fluids or infinitely unbounded fluid layers, but also considerable attention has been paid to rotating flows in fluid-filled containers such as cylinders, annuli and thick spherical layers or in complete spheres of fluid. Such studies are often considered to be relevant to the dynamics of planetary and stellar interiors and, more importantly, corresponding laboratory experiments in these fluid-filled rotating containers can be carried out, offering deep insight into the understanding of common processes at the heart of rotating flow phenomena.

It is clearly quite impossible today to cover the theory of rotating fluids to the same degree of completeness as Chandrasekhar (1961) or Greenspan (1968) could for the state of the subject in the 1960s. It is necessary to be highly selective. This monograph focuses primarily on the three areas we consider fundamental and central to geophysical and astrophysical applications: (i) inertial waves and oscillations in contained rotating systems caused solely by the effect of rotation, (ii) convective motions controlled by rotation but driven by the thermal instabilities of equilibria in which gravity is parallel to the basic
Preface

temperature gradient and (iii) fluid motions forced by non-uniformly rotating systems due to precession or libration. These three topics are physically and mathematically closely related. All the flow phenomena considered in this monograph either take place only in rotating fluids or are critically affected by rotation. It is natural that the selection of topics reflects unavoidably some elements of our personal preferences. We regret that many important subjects, such as compressible flows, the effects of stable stratification and some complex nonlinear theories, are omitted. However, we do believe that the three chosen areas are at the heart of the subject since it is the effect of rotation that controls fluid dynamics in rapidly rotating systems.

Traditionally, there are two disjoint topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). This monograph presents a unified theory for three seemingly mathematically and physically disconnected topics – thermal convection, inertial waves, and precession-driven flow – and demonstrates that these apparently complicated problems become mathematically tractable in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids.

Our objectives in writing this monograph are threefold. We introduce several topics that have not received extensive attention in other monographs on rotating fluids. We attempt to present a systematic and unified account of the theory of rotating Boussinesq fluids in various geometries as it has developed over the last several decades, hoping that it will lead readers up to the frontiers of research on those topics. Consideration of some geometries such as a rotating annular channel or cylinder is motivated by either their mathematical simplicity and clarity or by possible realization in experimental studies, while studies of other geometries like spheres and spheroids are mainly motivated by their direct application to planetary and astrophysical bodies. Many parts of the monograph are based on our original research over the past decades. Finally, it is also our intention that this monograph should be particularly useful to postgraduate researchers in many different fields such as geophysics, astrophysics, planetary physics and engineering.

With regard to the presentation of the subjects, we follow the following policies on style, depth and details. A considerable effort is made to ensure that each chapter is largely self-contained, readable independently of other chapters, at the expense of often repeating basic equations, certain notations and definitions. In order to make the theoretical development accessible to postgraduate researchers, we have included the amount of mathematical detail that is sufficient for them readily to reproduce the mathematical analysis and results. We also include many numerical tables that enable readers to compare or benchmark their analysis and numerical results if needed. Though we have emphasized the analytical aspects of the theory of rotating fluids, wherever possible we compare the theory with the results of corresponding numerical and experimental studies. We have assumed that readers are familiar with fundamental fluid mechanics, the basic theories of partial and ordinary differential equations and vector analysis.

Much of the material presented in this monograph is based on our own original studies as well as the research of our PhD students and post doctors. KZ is grateful to his
many colleagues, past and present collaborators, throughout the world. In particular, he is indebted to Professors F. H. Busse, D. Gubbins, A. Jackson, C. A. Jones, R. R. Kerswell, P. H. Roberts, G. Schubert and A. M. Soward; through numerous discussions with them over decades, they have significantly influenced his research on the subject. We are also grateful to Dr. S. J. Maskell who has carefully read the manuscript and provided numerous valuable comments. The blame for any defects and errors in this monograph rests squarely on us.

K. Zhang, University of Exeter, UK
X. Liao, Chinese Academy of Sciences, China