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1

Basic Concepts and Equations for Rotating Fluids

1.1 Introduction

The special fascination of the subject of rotating fluids stems from the fact that fluid

motions strongly affected by rotation are fundamentally different from those in non-

rotating systems. With the motivation of explaining or predicting many atmospheric,

oceanographic, planetary physical and astrophysical phenomena, the study of rotating flu-

ids has increasingly occupied the attention of geophysicists, astrophysicists, and applied

mathematicians. The subject of rotating fluids is also basic to many situations encountered

by engineers and applied-fluid dynamicists in a number of important problems, ranging

from centrifuges to the stability of rotating spacecraft carrying liquid payloads. Not sur-

prisingly, a large number of theoretical, experimental, numerical, and observational studies

have been made of rapidly rotating fluids over the past several decades.

Special characteristics of rotating flows lead to many inventive ideas that have been

particularly and successfully applied to the theory of rotating fluids. There are primarily

three special characteristics: (i) an overwhelming constraint on fluid motions imposed by

controlling rotational forces, (ii) unique types of oscillatory motions, inertial oscillations

and inertial waves, solely caused by the action of rotational forces, and (iii) a viscous

boundary layer, produced by the effect of fast rotation, that differs markedly from that in

non-rotating configurations.

These three fundamental characteristics underlie the foundation of the theory of rotating

fluids, including inertial waves, rotating convection, and precessing/librating flows dis-

cussed in this monograph. Because a relatively simple mathematical solution describing

inviscid wave motions can be readily obtained at leading-order proximation, theoretical

progress on the corresponding viscous problems can usually be made via the elegant

application of powerful asymptotic or perturbation methods.

The subject of rotating fluids contains two important but traditionally disjoint branches:

inertial waves, and convective instabilities. Inertial waves describe the motion of an invis-

cid fluid occurring only in rotating systems, while convective motions, driven by thermal

buoyancy, can take place in a viscous fluid in either rotating or non-rotating systems. Both

problems, inertial waves and thermal convection, have been separately and extensively

investigated. Inertial waves in rotating systems are governed by the Poincaré equation
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4 Basic Concepts and Equations for Rotating Fluids

with the fluid viscosity being neglected, solutions to which in several systems have been

discussed in Greenspan’s monograph (Greenspan, 1968). For the problem of thermal con-

vection, an additional equation governing the supply of buoyancy which drives convection

is required. The formulation of the problem and the results of earlier research in several dif-

ferent geometries were presented in Chandrasekhar’s monograph (Chandrasekhar, 1961).

The present monograph attempts to unify the theories of inertial waves, thermal convection,

and precessionally or librationally driven oscillations in the framework of an asymptotic

theory that incorporates and manifests the three special characteristics of rotating fluids.

In order to illustrate the basic dynamic processes at work in rotating fluids, we expend

considerable effort in studying fluid motions in rotating, closed containers completely filled

with liquids without free-surface effects in three different geometries: an annular channel

or a narrow-gap annulus, a circular cylinder, and a sphere or a spherical shell or an oblate

spheroid. All these rotating container configurations may be either exactly or approxi-

mately realized in laboratory experiments (see, for example, Malkus, 1968; Davies-Jones

and Gilman, 1971; Benton and Clark, 1974; Carrigan and Busse, 1983; Zhong et al., 1991;

Kobine, 1995; Noir et al., 2001; King and Aurnou, 2013).

1.2 Equations of Motion in Rotating Systems

We first discuss briefly the full equations of motion for rotating fluids. We shall base our

investigation on the continuum hypothesis throughout this book, implying that we are only

concerned with length scales of the flow that are much larger than the distance between the

molecules of the fluids (Batchelor, 1967). The molecular structure of the liquids is ignored

and the fluids are treated as perfectly continuous and homogeneous in structure.

The continuum hypothesis allows us to define an infinitesimal element of the fluid

located at the position vector r = xi(i = 1,2,3), where we use cartesian indices notation, at

time t. We describe the fluid element in an Eulerian system in which ρ(r, t) describes the

density of the fluid element, mass per unit volume, at position r and time t. The principle

of conservation of mass is then expressed in indices notation

∂ρ

∂t
+

∂(ρuk)

∂xk

= 0, (1.1)

or in vector notation

∂ρ

∂t
+∇ · (ρu) =

Dρ

Dt
+ρ∇ · u = 0, (1.2)

where u(r, t) = uk(xj, t) represents the velocity of the element at position r and time t and

the total derivative D/Dt is defined as

D

Dt
≡

∂

∂t
+ u · ∇.
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1.2 Equations of Motion in Rotating Systems 5

Equation (1.1) or (1.2) is the partial differential equation, called the continuity equation,

representing the physical law of conservation of mass under the continuum hypothesis.

Consider a Newtonian fluid of constant viscosity confined within a container that rotates

non-uniformly with a time-dependent angular velocity �(t) in the inertial frame. The prin-

ciple of conservation of momentum gives rise to the equation of motion for a fluid element

relative to a frame of reference. There are a number of different frames of reference that

may be employed in the mathematical formulation of rotating fluids. For many geophysi-

cal problems like the dynamics of atmospheres, it is physically natural and mathematically

convenient to adopt a frame of reference whose axes are fixed in a fluid-filled container –

which is usually referred to as the rotating frame or the mantle frame or the body frame –

so that the bounding surface of the container is stationary and only small departures from

rigid-body rotation are concerned.

Denote the rate of change of any vector seen by an observer in the rotating frame by

(∂/∂t)rotating and the rate of change seen by an observer in the non-rotating inertial frame

by (∂/∂t)inertial. The relationship between the two rates of change is

(

∂

∂t

)

inertial

=

(

∂

∂t

)

rotating

+�(t)×. (1.3)

If r is the position vector of a fluid element, the application of Equation (1.3) gives

(

∂r

∂t

)

inertial

=

(

∂r

∂t

)

rotating

+�×r or uinertial = urotating +�× r,

where uinertial = (∂r/∂t)inertial is the velocity relative to the inertial frame and urotating =

(∂r/∂t)rotating is the velocity measured in the rotating frame. To an observer in the inertial

frame, there exists an additional term �× r due to rotation. The acceleration in the inertial

frame is then

(

∂uinertial

∂t

)

inertial

=

[

∂
(

urotating +�× r
)

∂t

]

inertial

=

(

∂urotating

∂t

)

inertial

+

(

∂�

∂t

)

inertial

× r +�×

(

∂r

∂t

)

inertial

,

where we, after applying Equation (1.3), notice that

(

∂urotating

∂t

)

inertial

=

(

∂urotating

∂t

)

rotating

+�×urotating,

(

∂r

∂t

)

inertial

= uinertial = urotating +�× r.
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6 Basic Concepts and Equations for Rotating Fluids

It follows then that

(

∂uinertial

∂t

)

inertial

=

[

(

∂urotating

∂t

)

rotating

+�×urotating

]

+

(

∂�

∂t

)

inertial

× r +
[

�×
(

urotating +�× r
)]

=

(

∂urotating

∂t

)

rotating

+ 2�×urotating +

(

∂�

∂t

)

inertial

× r +�× (�× r) .

We also notice that
(

∂�

∂t

)

inertial

=

(

∂�

∂t

)

rotating

.

Because we shall always use the rotating frame throughout this monograph, the subscript

rotating will be dropped unless otherwise specified. In the rotating frame of reference

whose axes are fixed in a fluid-filled container, the Navier–Stokes momentum equation

is of the form

ρ

[

∂u

∂t
+ u · ∇u + 2�× u +�× (�× r)

]

= −∇p +ρg +μ

[

∇2u +
1

3
∇ (∇ · u)

]

+ρr ×

(

∂�

∂t

)

+ρf, (1.4)

where μ is the coefficient of dynamic viscosity assumed to be constant over space and

time, g is the acceleration due to gravity, p is the pressure, the force per unit area imposed

on the element of the fluid from surrounding elements, u is the fluid velocity relative to the

rotating frame, (∂�/∂t) represents the rate of change of the angular velocity �(t), and f

denotes an external body force. The term (∂�/∂t), will later be explicitly worked out for

different applications.

Three terms in Equation (1.4) involve angular velocity �. The first, 2�×u, is called the

Coriolis force; r × (∂�/∂t) is usually referred to as the Poincaré force; and � × (�× r)

represents the centrifugal force, which can be written in the form of a gradient

�× (�× r) = −
1

2
∇ |�× r|2 .

The equation of motion (1.4) says that the rate of change of the fluid velocity in the rotating

frame of reference is caused by the net joint effects of the Coriolis force, the Poincaré force,

the centrifugal force, the inertial force, the pressure force, the body force, and the viscous

force.

1.3 The Heat Equation

The mathematical system described by the continuity equation (1.2) and the equation of

motion (1.4) is not closed because there are five scalar unknowns, ρ,p and uj, j = 1,2,3 with
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1.4 The Boussinesq Equations 7

only four equations in the system. An equation of state is needed, defining the relationship

between the pressure p, the density ρ and the temperature T ,

ρ = ρ(p,T), (1.5)

which also introduces the local temperature T as an additional unknown. It follows that an

extra equation for the conservation of energy, often called the heat equation, is required to

close the mathematical system,

cp

DT

Dt
=

1

ρ

∂

∂xj

(

k
∂T

∂xj

)

+
Qh

ρ
+

μ

2ρ

[

(

∂ui

∂xj

+
∂uj

∂xi

)2

−
4

3

(

∂ul

∂xl

)2
]

, (1.6)

where k is the thermal conductivity of the liquid, Fourier’s law of heat conduction

q = −k∇T (1.7)

is adopted, the material parameter μ is the coefficient of dynamic viscosity of the fluid, cp is

the specific heat at constant pressure, and Qh denotes the rate of internal heat production per

unit volume. In the heat equation the terms proportional to p and Dp/Dt, which are usually

small in comparison to other terms in the equation, have been neglected. Equation (1.6)

states that the rate of change of internal energy per unit mass of an element of fluid (the left-

hand side) is caused by heat conduction, internal heat generation, and viscous dissipation.

1.4 The Boussinesq Equations

The three equations describing fluid motions in rotating systems, the continuity equation

(1.1), the equation of motion (1.4), and the heat equation (1.6), must be simplified to be

manageable in mathematical analysis. Furthermore, the equation of state (1.5) is usually

highly complex and needs to be specified and simplified. In particular, these equations

include very short timescale processes such as acoustic waves, a complication we do not

wish to deal with and intend to remove. In typical laboratory experiments, the range of

variation of temperature and pressure is small and we may treat the density as independent

of the pressure and linearly dependent on the difference between the temperature, T , and a

reference temperature T0:

ρ = ρ0 [1 −α(T − T0)] , (1.8)

where ρ0 is the density at T0 and α is the coefficient of thermal expansion, which is

assumed to be constant and is usually very small for many liquids, such that

|ρ −ρ0|

ρ0
= α|T − T0| ≪ 1
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8 Basic Concepts and Equations for Rotating Fluids

for a temperature variation of moderate amount. For many liquids, the simple equation of

state (1.8) gives rise to a satisfactory approximation over a wide range of temperature and

contains all the important physics with a minimum of mathematical complexity.

A commonly used approximation in both non-rotating and rotating flows, first applied by

Rayleigh (1916), is the Oberbeck–Boussinesq approximation (Oberbeck, 1888; Boussinesq,

1903). The key assumption is that the variation in density is small and its effect is neglected

everywhere except in the buoyancy term that drives the fluid motions. Within the Boussinesq

approximation, all the thermodynamic variables such as the thermal conductivity k and

the specific heat cp can be treated as constants except for the density when multiplied by

the gravity g. At leading-order approximation, the differential in density in the continuity

equation (1.2), which is of O(α), is neglected to yield the divergence-free condition

∇ · u = 0, (1.9)

which can be formally justified by scaling analysis (Spiegel and Veronis, 1960). In the

framework of the Boussinesq approximation and in a reference frame fixed in a rotating

container, the momentum equation (1.4), after using Equations (1.8) and (1.9), becomes

[

∂u

∂t
+ u · ∇u + 2�× u

]

= −
1

ρ0
∇P − gα�+ ν∇2u + r ×

(

∂�

∂t

)

+ f, (1.10)

where ν = μ/ρ0 is called the coefficient of kinematic viscosity,

� = T − T0

denotes departure from the time-independent reference temperature T0, and P forms the

reduced pressure

P = p − p0 −
ρ0

2
(�× r) · (�× r) ,

where the centrifugal force, � × (� × r), and the hydrostatic pressure p0 have been

absorbed into the reduced pressure P. It is worth noting the following important feature

relating to Equation (1.10). The solution u = 0 is possible when (∂�/∂t) = 0, f = 0 and

� = 0, providing a basic state for the stability analysis of thermal convection. In this case,

the position of the rotation axis is not mathematically significant because the centrifu-

gal acceleration, which depends on the location of the rotation axis, acts only to modify

the pressure gradient and because the pressure does not require a boundary condition on

the wall of a fluid-filled container. Here we have assumed that g is much larger than the

centrifugal acceleration such that a simple static equilibrium without having relative fluid

motion in the rotating frame is permitted.

In many geophysical and astrophysical systems, much larger ranges of temperature and

pressure prevail. The convective velocities are usually small compared to the speed of

sound, but are fast compared with the diffusion of heat. Under these conditions, the Boussi-

nesq approximation remains largely valid provided the variables P, T , and u are regarded as
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1.4 The Boussinesq Equations 9

departures from a well-mixed isentropic state of rest where the pressure, p0, is hydrostatic

as defined by

∇p0 = ρ0g,

and the temperature T0 follows the adiabatic gradient.

The heat equation must also be simplified. Within the Boussinesq approximation, the

rate of heat production due to viscous dissipation is negligibly small in comparison to other

terms in Equation (1.6), leading to the simplified heat equation

∂�

∂t
+ u · ∇ (�+ T0) = κ∇2 (�+ T0)+

Qh

cpρ0
, (1.11)

where κ is the thermal diffusivity defined as

κ =
k

cpρ0
.

The simplified heat equation gives an excellent approximation to Equation (1.6) for many

fluids over a wide range of physical problems. These five scalar equations – the continuity

equation (1.9), three scalar equations arising from the momentum equation (1.10), and the

energy equation (1.11) – govern five unknown variables: the three components of velocity,

uj, j = 1,2,3, the reduced pressure P, and the temperature perturbation �. This set of five

equations, along with a set of appropriate velocity and temperature boundary conditions,

represents a mathematically closed system that describes the motion of a Boussinesq fluid

in rotating systems. They are usually referred to as the Boussinesq equations, and will be

studied throughout this monograph in various geometries in rotating systems.

On the bounding surface, S , of a rotating fluid container, we must specify a set of

boundary conditions for the flow velocity u and the temperature T . For the velocity, two

types of condition are widely adopted. In a reference frame fixed in the rotating container,

the first type, which is suitable for experimental studies of rotating fluids, is the no-slip

boundary condition defined by

n̂ · u = 0, n̂ × u = 0 on S , (1.12)

where n̂ = n̂j denotes the normal to the bounding surface of the container S . The second is

referred to as the stress-free condition

n̂j

(

∂ui

∂xj

+
∂uj

∂xi

)

= 0 on S , (1.13)

which is appropriate for many geophysical and astrophysical systems, such as the atmo-

sphere of a planet. There are also two types of temperature boundary condition that

are widely employed in the context of thermal convection. The first is that of constant
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10 Basic Concepts and Equations for Rotating Fluids

temperature, the isothermal boundary condition, on the bounding surface of the container,

� = 0 on S . (1.14)

The second type is that of constant heat-flux at the bounding surface

n̂ · ∇� = 0 on S . (1.15)

Generally speaking, the stress-free condition (1.13) leads to a weak viscous boundary layer

in rotating fluids, with simplified mathematical analysis, while no-slip condition (1.12) is

usually marked by a strong viscous boundary layer along with more complex analysis.

It is worth mentioning that the Boussinesq approximation can be extended to include

a basic density profile ρ0 that is a function of space. In this case, the continuity equation

(1.1) becomes

∇ · (ρ0u) = 0, (1.16)

which is usually referred to as the anelastic approximation (Batchelor, 1953; Ogura and

Phillips, 1962; Gough, 1969).

1.5 The Kinetic Energy Equation

To provide physical insight into the various terms in the momentum equation (1.10), we

derive the kinetic energy equation of a rotating Boussinesq fluid by taking the scalar

product of Equation (1.10) with the fluid velocity u to get

1

2

∂|u|2

∂t
= −∇ ·

[

1

2
u|u|2 +

P

ρ0
u − 2νu × (∇ × u)

]

− 2u · (�× u)

− ν|∇ × u|2 + u ·

[

r ×

(

∂�

∂t

)]

−αu · g�, (1.17)

where we have taken the external force f = 0 and made use of the divergence-free condition

(1.9). Note that the Coriolis force is perpendicular to the velocity, u · (� × u) = 0, so it

cannot do work. However, the Poincaré force, r × (∂�/∂t), is fundamentally different and

can do work on the fluid system.

For a Boussinesq fluid in a rotating container of volume V bounded by S with the no-slip

boundary condition, the total kinetic energy of the fluid, Ekin, is governed by

dEkin

dt
=

d

dt

(
∫

V

1

2
|u|2 dV

)

= −

∫

V

{

ν|∇ × u|2 + u ·

[(

∂�

∂t

)

× r

]

+αu · g�

}

dV , (1.18)
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1.6 Taylor–Proudman Theorem and Thermal Wind Equation 11

where the no-slip boundary condition (1.12) on the bounding surface has been used. The

left-hand side represents the rate of change of the kinetic energy Ekin of the flow. On the

right-hand side of Equation (1.18), the first term, which is always negative, denotes the

viscous dissipation of kinetic energy, the second term describes the kinetic energy produced

by the effect of non-uniform rotation or precessing forcing, and the last term gives the rate

at which buoyancy forces convert the potential energy of gravity, acting on a non-uniform

density, into kinetic energy. For a viscous (ν 	= 0), homogeneous (� ≡ 0) fluid confined

in a uniformly rotating container ((∂�/∂t) = 0), the total kinetic energy always decreases,

dEkin/dt < 0, from that of any initial flow because of the effect of viscous dissipation. This

complex general problem in a rapidly rotating system can then be accordingly classified

into three simpler cases.

1. An ideal inviscid (ν = 0), homogeneous (� ≡ 0) fluid confined in a uniformly rotat-

ing container ((∂�/∂t) = 0). In this case, the total kinetic energy is conserved, i.e.,

dEkin/dt = 0. It is the Coriolis force alone that provides the restoring force for oscil-

latory fluid motions. The problem of inertial waves or oscillations for an inviscid fluid

will be discussed in Part 2 of this monograph.

2. A viscous (ν 	= 0), homogeneous (� ≡ 0) fluid confined in a non-uniformly rotating

container ((∂�/∂t) 	= 0) where the fluid motions are driven by precession or libration.

This precession/libration problem for a viscous fluid will be discussed in Part 3 of this

monograph.

3. A viscous (ν 	= 0), unstably stratified (� 	= 0) fluid confined in a uniformly rotating

container ((∂�/∂t) = 0) where the fluid motions are driven by the buoyancy force

through convective instabilities. The convection problem in rapidly rotating systems

will be discussed in Part 4 of this monograph.

It will be seen that three seemingly different problems in rotating systems are mathemat-

ically and physically interconnected, and those seemingly complicated problems become

mathematically simple in the framework of inertial waves or inertial oscillations that have

analytical solutions in closed form. We shall discuss these three problems separately in

various geometries ranging from channel through cylinder to sphere and spheroid.

1.6 Taylor–Proudman Theorem and Thermal Wind Equation

A profoundly important result in rapidly rotating systems is the Taylor–Proudman theorem

(Proudman, 1916; Taylor, 1921), which can be derived from the consideration of fluid

motions with characteristic velocity U in a system rotating uniformly ((∂�/∂t) = 0) with

constant angular velocity �. Suppose that (i) the fluid motions are steady (∂u/∂t = 0); (ii)

the fluid motions are sufficiently slow such that the nonlinear term (u ·∇u) is much smaller

than the Coriolis acceleration, or more explicitly,

∣

∣

∣

∣

u · ∇u

u ×�

∣

∣

∣

∣

= O

(

U

d


)

= O(Ro) ≪ 1,
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