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Why convex?

The first modern formalization of the concept of convex function appears in J. L. W. V.
Jensen, “Om konvexe funktioner og uligheder mellem midelvaerdier.” Nyt Tidsskr. Math. B
16 (1905), pp. 49–69. Since then, at first referring to “Jensen’s convex functions,” then more
openly, without needing any explicit reference, the definition of convex function becomes a
standard element in calculus handbooks. (A. Guerraggio and E. Molho)1

Convexity theory . . . reaches out in all directions with useful vigor. Why is this so? Surely any
answer must take account of the tremendous impetus the subject has received from outside
of mathematics, from such diverse fields as economics, agriculture, military planning, and
flows in networks. With the invention of high-speed computers, large-scale problems from
these fields became at least potentially solvable. Whole new areas of mathematics (game
theory, linear and nonlinear programming, control theory) aimed at solving these problems
appeared almost overnight. And in each of them, convexity theory turned out to be at the
core. The result has been a tremendous spurt in interest in convexity theory and a host of
new results. (A. Wayne Roberts and Dale E. Varberg)2

1.1 Why ‘convex’?

This introductory polemic makes the case for a study focusing on convex functions and
their structural properties. We highlight the centrality of convexity and give a selection
of salient examples and applications; many will be revisited in more detail later in
the text – and many other examples are salted among later chapters. Two excellent
companion pieces are respectively by Asplund [15] and by Fenchel [212]. A more
recent survey article by Berger has considerable discussion of convex geometry [53].

It has been said that most of number theory devolves to the Cauchy–Schwarz
inequality and the only problem is deciding ‘what to Cauchy with’. In like fashion,
much mathematics is tamed once one has found the right convex ‘Green’s function’.
Why convex? Well, because . . .

• For convex sets topological, algebraic, and geometric notions often coincide; one
sees this in the study of the simplex method and of continuity of convex functions.
This allows one to draw upon and exploit many different sources of insight.

1 A. Guerraggio and E. Molho, “The origins of quasi-concavity: a development between mathematics and
economics,” Historia Mathematica, 31, 62–75, (2004).

2 Quoted by Victor Klee in his review of [366], SIAM Review, 18, 133–134, (1976).
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2 Why convex?

• In a computational setting, since the interior-point revolution [331] in linear opti-
mization it is now more or less agreed that ‘convex’ = ‘easy’ and ‘nonconvex’ =
‘hard’ – both theoretically and computationally. A striking illustration in combi-
natorial optimization is discussed in Exercise 3.3.9. In part this easiness is for the
prosaic reason that local and global minima coincide.

• ‘Differentiability’ is understood and has been exploited throughout the sciences for
centuries; ‘convexity’ less so, as the opening quotations attest. It is not emphasized
in many instances in undergraduate courses – convex principles appear in topics
such as the second derivative test for a local extremum, in linear programming
(extreme points, duality, and so on) or via Jensen’s inequality, etc. but often they
are not presented as part of any general corpus.

• Three-dimensional convex pictures are surprisingly often realistic, while two-
dimensional ones are frequently not as their geometry is too special. (Actually
in a convex setting even two-dimensional pictures are much more helpful com-
pared to those for nonconvex functions, still three-dimensional pictures are better.
A good illustration is Figure 2.16. For example, working two-dimensionally, one
may check convexity along lines, while seeing equal right-hand and left-hand
derivatives in all directions implies differentiability.)

1.2 Basic principles

First we define some of the fundamental concepts. This is done more methodically
in Chapter 2. Throughout this book, we will typically use E to denote the finite-
dimensional real vector space Rn for some n ∈ N endowed with its usual norm, and
typically X will denote a real infinite-dimensional Banach space – and sometimes
merely a normed space. In this introduction we will tend to state results and introduce
terminology in the setting of the Euclidean space E because this more familiar and
concrete setting already illustrates their power and utility.

Aset C ⊂ E is said to be convex if it contains all line segments between its members:
λx + (1− λ)y ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1. Even in two dimensions this
deserves thought: every set S with {(x, y) : x2+y2 < 1} ⊂ S ⊂ {(x, y) : x2+y2 ≤ 1}
is convex.

The lower level sets of a function f : E → [−∞,+∞] are the sets {x ∈ E : f (x) ≤
α} where α ∈ R. The epigraph of a function f : E → [−∞,+∞] is defined by

epi f := {(x, t) ∈ E × R : f (x) ≤ t}.

We will see a function as convex if its epigraph is a convex set; and we will use ∞
and +∞ interchangeably, but we prefer to use +∞ when −∞ is nearby.

Consider a function f : E → [−∞,+∞]; we will say f is closed if its epigraph
is closed; whereas f is lower-semicontinuous (lsc) if lim inf x→x0 f (x) ≥ f (x0) for
all x0 ∈ E. These two concepts are intimately related for convex functions. Our
primary focus will be on proper functions, those functions f : E → [−∞,+∞] that
do not take the value −∞ and whose domain of f , denoted by dom f , is defined
by dom f := {x ∈ E : f (x) < ∞}. The indicator function of a nonempty set D
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1.2 Basic principles 3

is the function δD defined by δD(x) := 0 if x ∈ D and δD(x) := +∞ otherwise.
These notions allow one to study convex functions and convex sets interchangeably,
however, our primary focus will center on convex functions.

A sketch of a real-valued differentiable convex function very strongly suggests
that the derivative of such a function is monotone increasing, in fact this is true more
generally – but in a nonobvious way. If we denote the derivative (or gradient) of a
real function g by∇g, then using the inner product the monotone increasing property
of ∇g can be written as

〈∇g(y)− ∇g(x), y − x〉 ≥ 0 for all x and y.

The preceding inequality leads to the definition of the monotonicity of the gradient
mapping on general spaces. Before stating our first basic result, let us recall that a set
K ⊂ E is a cone if tK ⊂ K for every t ≥ 0; and an affine mapping is a translate of a
linear mapping.

We begin with a recapitulation of the useful preservation and characterization
properties convex functions possess:

Lemma 1.2.1 (Basic properties). The convex functions form a convex cone closed
under pointwise suprema: if fγ is convex for each γ ∈ � then so is x 
→ supγ∈� fγ (x).

(a) A function g is convex if and only if epi g is convex if and only if δepi g is convex.
(b) A differentiable function g is convex on an open convex set D if and only if ∇g

is a monotone operator on D, while a twice differentiable function g is convex if
and only if the Hessian ∇2g is a positive semidefinite matrix for each value in D.

(c) g ◦ α and m ◦ g are convex when g is convex, α is affine and m is monotone
increasing and convex.

(d) For t > 0, the function (x, t) 
→ tg(x/t) is convex if and only if the function g is
convex.

Proof. See Lemma 2.1.8 for (a), (c) and (d). Part (b) is developed in Theorem 2.2.6
andTheorem 2.2.8, where we are more precise about the form of differentiability used.
In (d) one may be precise also about the lsc hulls, see [95] and Exercise 2.3.9.

Before introducing the next result which summarizes many of the important con-
tinuity and differentiability properties of convex functions, we first introduce some
crucial definitions. For a proper function f : E → (−∞,+∞], the subdifferential of
f at x̄ ∈ E where f (x̄) is finite is defined by

∂f (x̄) := {φ ∈ E : 〈φ, y − x̄〉 ≤ f (y)− f (x̄), for all y ∈ E}.

If f (x̄) = +∞, then ∂f (x̄) is defined to be empty. Moreover, if φ ∈ ∂f (x̄), then φ

is said to be a subgradient of f at x̄. Note that, trivially but importantly, 0 ∈ ∂f (x) –
and we call x a critical point – if and only if x is a minimizer of f .

While it is possible for the subdifferential to be empty, we will see below that very
often it is not. An important consideration for this is whether x̄ is in the boundary of
the domain of f or in its interior, and in fact, in finite dimensions, the relative interior
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4 Why convex?

AN ESSENTIALLY STRICTLY CONVEX FUNCTION WITH
NONCONVEX SUBGRADIENT DOMAIN

AND WHICH IS NOT STRICTLY CONVEX

max{(x – 2) ^ 2 + y ^ 2 – 1, – (x*y) ^ (1/4)}

Figure 1.1 A subtle two-dimensional function from Chapter 6.

(i.e. the interior relative to the affine hull of the set) plays an important role. The
function f is Fréchet differentiable at x̄ ∈ dom f with Fréchet derivative f ′(x̄) if

lim
t→0

f (x̄ + th)− f (x̄)

t
= 〈f ′(x̄), h〉

exists uniformly for all h in the unit sphere. If the limit exists only pointwise, f is
Gâteaux differentiable at x̄. With these terms in mind we are now ready for the next
theorem.

Theorem 1.2.2. In Banach space, the following are central properties of
convexity:

(a) Global minima and local minima coincide for convex functions.
(b) Weak and strong closures coincide for convex functions and convex sets.
(c) A convex function is locally Lipschitz if and only if it is continuous if and only if

it is locally bounded above. A finite lsc convex function is continuous; in finite
dimensions lower-semicontinuity is not automatic.

(d) In finite dimensions, say n=dim E, the following hold.

(i) The relative interior of a convex set always exists and is nonempty.
(ii) A convex function is differentiable if and only if it has a unique subgradient.
(iii) Fréchet and Gâteaux differentiability coincide.
(iv) ‘Finite’ if and only if ‘n + 1’ or ‘n’ (e.g. the theorems of Radon, Helly,

Carathéodory, and Shapley–Folkman stated below in Theorems 1.2.3, 1.2.4,
1.2.5, and 1.2.6). These all say that a property holds for all finite sets as
soon as it holds for all sets of cardinality of order the dimension of the
space.
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1.2 Basic principles 5

Proof. For (a) see Proposition 2.1.14; for (c) see Theorem 2.1.10 and Proposi-
tion 4.1.4. For the purely finite-dimensional results in (d), see Theorem 2.4.6 for (i);
Theorem 2.2.1 for (ii) and (iii); and Exercises 2.4.13, 2.4.12, 2.4.11, and 2.4.15, for
Helly’s, Radon’s, Carathéodory’s and Shapley–Folkman theorems respectively.

Theorem 1.2.3 (Radon’s theorem). Let {x1, x2, . . . , xn+2} ⊂ Rn. Then there is a
partition I1∪I2 = {1, 2, . . . , n+2} such that C1∩C2 �= ∅where C1 = conv{xi : i ∈ I1}
and C2 = conv{xi : i ∈ I2}.

Theorem 1.2.4 (Helly’s theorem). Suppose {Ci}i∈I is a collection of nonempty closed
bounded convex sets in Rn, where I is an arbitrary index set. If every subcollection
consisting of n+1 or fewer sets has a nonempty intersection, then the entire collection
has a nonempty intersection.

In the next two results we observe that when positive as opposed to convex
combinations are involved, ‘n+ 1’ is replaced by ‘n’.

Theorem 1.2.5 (Carathéodory’s theorem). Suppose {ai : i ∈ I} is a finite set of points
in E. For any subset J of I , define the cone

CJ =
{∑

i∈J

µiai : µi ∈ [0,+∞), i ∈ J

}
.

(a) The cone CI is the union of those cones CJ for which the set {aj : j ∈ J } is
linearly independent. Furthermore, any such cone CJ is closed. Consequently,
any finitely generated cone is closed.

(b) If the point x lies in conv{ai : i ∈ I} then there is a subset J ⊂ I of size at most
1 + dim E such that x ∈ conv{ai : i ∈ J }. It follows that if a subset of E is
compact, then so is its convex hull.

Theorem 1.2.6 (Shapley–Folkman theorem). Suppose {Si}i∈I is a finite collection of
nonempty sets in Rn, and let S := ∑

i∈I Si. Then every element x ∈ conv S can be
written as x = ∑

i∈I xi where xi ∈ conv Si for each i ∈ I and moreover xi ∈ Si for
all except at most n indices.

Given a nonempty set F ⊂ E, the core of F is defined by x ∈ core F if for each
h ∈ E with ‖h‖ = 1, there exists δ > 0 so that x + th ∈ F for all 0 ≤ t ≤ δ.
It is clear from the definition that the interior of a set F is contained in its core,
that is, int F ⊂ core F . Let f : E → (−∞,+∞]. We denote the set of points of
continuity of f by cont f . The directional derivative of f at x̄ ∈ dom f in the direction
h is defined by

f ′(x̄; h) := lim
t→0+

f (x̄ + th)− f (x̄)

t

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-85005-6 - Convex Functions: Constructions, Characterizations and Counterexamples
Jonathan M. Borwein and Jon D. Vanderwerff
Excerpt
More information

http://www.cambridge.org/9780521850056
http://www.cambridge.org
http://www.cambridge.org


6 Why convex?

if the limit exists – and it always does for a convex function. In consequence one has
the following simple but crucial result.

Theorem 1.2.7 (First-order conditions). Suppose f : E → (−∞,+∞] is convex.
Then for any x ∈ dom f and d ∈ E,

f ′(x; d) ≤ f (x + d)− f (x). (1.2.1)

In consequence, f is minimized (locally or globally) at x0 if and only if f ′(x0; d) ≥ 0
for all d ∈ E if and only if 0 ∈ ∂f (x0).

The following fundamental result is also a natural starting point for the so-called
Fenchel duality/Hahn–Banach theorem circle. Let us note, also, that it directly relates
differentiability to the uniqueness of subgradients.

Theorem 1.2.8 (Max formula). Suppose f : E → (−∞,+∞] is convex (and lsc in
the infinite-dimensional setting) and that x̄ ∈ core(dom f ). Then for any d ∈ E,

f ′(x̄; d) = max{〈φ, d〉 : φ ∈ ∂f (x̄)}. (1.2.2)

In particular, the subdifferential ∂f (x̄) is nonempty at all core points of dom f .

Proof. See Theorem 2.1.19 for the finite-dimensional version and Theorem 4.1.10
for infinite-dimensional version.

Building upon the Max formula, one can derive a quite satisfactory calculus for
convex functions and linear operators. Let us note also, that for f : E → [−∞,+∞],
the Fenchel conjugate of f is denoted by f ∗ and defined by f ∗(x∗) := sup{〈x∗, x〉 −
f (x) : x ∈ E}. The conjugate is always convex (as a supremum of affine functions)
while f = f ∗∗ exactly if f is convex, proper and lsc. Avery important case leads to the
formula δ∗C(x∗) = supx∈C〈x∗, x〉, the support function of C which is clearly continu-
ous when C is bounded, and usually denoted by σC . This simple conjugate formula
will play a crucial role in many places, including Section 6.6 where some duality rela-
tionships between Asplund spaces and those with the Radon–Nikodým property are
developed.

Theorem 1.2.9 (Fenchel duality and convex calculus). Let E and Y be Euclidean
spaces, and let f : E → (−∞,+∞] and g : Y → (−∞,+∞] and a linear map
A : E → Y , and let p, d ∈ [−∞,+∞] be the primal and dual values defined
respectively by the Fenchel problems

p := inf
x∈E
{ f (x)+ g(Ax)} (1.2.3)

d := sup
φ∈Y
{−f ∗(A∗φ)− g∗(−φ)}. (1.2.4)
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1.2 Basic principles 7

Then these values satisfy the weak duality inequality p ≥ d. If, moreover, f and g are
convex and satisfy the condition

0 ∈ core(dom g − A dom f ) (1.2.5)

or the stronger condition

A dom f ∩ cont g �= ∅ (1.2.6)

then p = d and the supremum in the dual problem (1.2.4) is attained if finite.
At any point x ∈ E, the subdifferential sum rule,

∂( f + g ◦ A)(x) ⊃ ∂f (x)+ A∗∂g(Ax) (1.2.7)

holds, with equality if f and g are convex and either condition (1.2.5) or (1.2.6)
holds.

Proof. The proof for Euclidean spaces is given in Theorem 2.3.4; a version in Banach
spaces is given in Theorem 4.4.18.

A nice application of Fenchel duality is the ability to obtain primal solutions from
dual ones; this is described in Exercise 2.4.19.

Corollary 1.2.10 (Sandwich theorem). Let f : E → (−∞,+∞] and g : Y →
(−∞,+∞] be convex, and let A : E → Y be linear. Suppose f ≥ −g ◦ A and
0 ∈ core(dom g − A dom f ) (or A dom f ∩ cont g �= ∅). Then there is an affine
function α : E → R satisfying f ≥ α ≥ −g ◦ A.

It is sometimes more desirable to symmetrize this result by using a concave function
g, that is a function for which−g is convex, and its hypograph, hyp g, as in Figure 1.2.

Using the sandwich theorem, one can easily deduce Hahn–Banach exten-
sion theorem (2.1.18) and the max formula to complete the so-called Fenchel
duality/Hahn–Banach circle.

epi f

hyp g

Figure 1.2 A sketch of the sandwich theorem.
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8 Why convex?

A final key result is the capability to reconstruct a convex set from a well defined
set of boundary points, just as one can reconstruct a convex polytope from its corners
(extreme points). The basic result in this area is:

Theorem 1.2.11 (Minkowski). Let E be a Euclidean space. Any compact convex
set C ⊂ E is the convex hull of its extreme points. In Banach space it is typically
necessary to take the closure of the convex hull of the extreme points.

Proof. This theorem is proved in Euclidean spaces in Theorem 2.7.2.

With these building blocks in place, we use the following sections to illustrate some
diverse examples where convex functions and convexity play a crucial role.

1.3 Some mathematical illustrations

Perhaps the most forcible illustration of the power of convexity is the degree to which
the theory of best approximation, i.e. existence of nearest points and the study of
nonexpansive mappings, can be subsumed as a convex optimization problem. For a
closed set S in a Hilbert space X we write dS(x) := inf x∈S ‖x − s‖ and call dS the
(metric) distance function associated with the set S. A set C in X such that each x ∈ X
has a unique nearest point in C is called a Čebyšev set.

Theorem 1.3.1. Let X be a Euclidean (resp. Hilbert) space and suppose C is a
nonempty (weakly) closed subset of X . Then the following are equivalent.

(a) C is convex.
(b) C is a Čebyšev set.
(c) d2

C is Fréchet differentiable.
(d) d2

C is Gâteaux differentiable.

Proof. See Theorem 4.5.9 for the proof.

We shall use the necessary condition for inf C f to deduce that the projection
on a convex set is nonexpansive; this and some other properties are described in
Exercise 2.3.17.

Example 1.3.2 (Algebra). Birkhoff’s theorem [57] says the doubly stochastic matri-
ces (those with nonnegative entries whose row and column sum equal one) are convex
combinations of permutation matrices (their extreme points).

A proof using convexity is requested in Exercise 2.7.5 and sketched in detail in
[95, Exercise 22, p. 74].

Example 1.3.3 (Real analysis). The following very general construction links convex
functions to nowhere differentiable continuous functions.

Theorem 1.3.4 (Nowhere differentiable functions [145]). Let an > 0 be such that∑∞
n=1 an < ∞. Let bn < bn+1 be integers such that bn|bn+1 for each n, and the
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1.3 Some mathematical illustrations 9

sequence anbn does not converge to 0. For each index j ≥ 1, let fj be a continuous
function mapping the real line onto the interval [0, 1] such that fj = 0 at each even
integer and fj = 1 at each odd integer. For each integer k and each index j, let fj be
convex on the interval (2k , 2k + 2).

Then the continuous function
∑∞

j=1 ajfj(bjx) has neither a finite left-derivative nor
a finite right-derivative at any point.

In particular, for a convex nondecreasing function f mapping [0, 1] to [0, 1],
define f (x) = f (2 − x) for 1 < x < 2 and extend f periodically. Then Ff (x) :=∑∞

j=1 2−j f (2jx) defines a continuous nowhere differentiable function.

Example 1.3.5 (Operator theory). The Riesz–Thorin convexity theorem informally
says that if T induces a bounded linear operator between Lebesgue spaces Lp1 and
Lp2 and also between Lq1 and Lq2 for 1 < p1, p2 < ∞ and 1 < q1, q2 < ∞ then it
also maps Lr1 to Lr2 whenever (1/r1, 1/r2) is a convex combination of (1/p1, 1/p2)

and (1/q1, 1/q2) (all three pairs lying in the unit square).

A precise formulation is given by Zygmund in [451, p. 95].

Example 1.3.6 (Real analysis). The Bohr–Mollerup theorem characterizes the
gamma-function x 
→ ∫∞

0 tx−1 exp(−t) dt as the unique function f mapping the
positive half line to itself such that (a) f (1) = 1, (b) xf (x) = f (x + 1) and (c) log f
is convex function

A proof of this is outlined in Exercise 2.1.24; Exercise 2.1.25 follows this by
outlining how this allows for computer implementable proofs of results such as
β(x, y) = �(x)�(y)/�(x, y)where β is the classical beta-function. A more extensive
discussion of this topic can be found in [73, Section 4.5].

Example 1.3.7 (Complex analysis). Gauss’s theorem shows that the roots of the
derivative of a polynomial lie inside the convex hull of the zeros.

More precisely one has the Gauss–Lucas theorem: For an arbitrary not identically
constant polynomial, the zeros of the derivative lie in the smallest convex polygon
containing the zeros of the original polynomial. While Gauss originally observed:
Gauss’s theorem: The zeros of the derivative of a polynomial P that are not multiple
zeros of P are the positions of equilibrium in the field of force due to unit particles
situated at the zeros of P, where each particle repels with a force equal to the inverse
distance. Jensen’s sharpening states that if P is a real polynomial not identically
constant, then all nonreal zeros of P

′
lie inside the Jensen disks determined by all

pairs of conjugate nonreal zeros of P. See Pólya–Szegő [273].

Example 1.3.8 (Levy–Steinitz theorem (combinatorics)). The rearrangements of a
series with values in Euclidean space always is an affine subspace (also called a flat).

Riemann’s rearrangement theorem is the one-dimensional version of this lovely
result. See [382], and also Pólya-Szegő [272] for the complex (planar) case.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-85005-6 - Convex Functions: Constructions, Characterizations and Counterexamples
Jonathan M. Borwein and Jon D. Vanderwerff
Excerpt
More information

http://www.cambridge.org/9780521850056
http://www.cambridge.org
http://www.cambridge.org


10 Why convex?

We finish this section with an interesting example of a convex function whose
convexity, established in [74, §1.9], seems hard to prove directly (a proof is outlined
in Exercise 4.4.10):

Example 1.3.9 (Concave reciprocals). Let g(x) > 0 for x > 0. Suppose 1/g is
concave (which implies log g and hence g are convex) then

(x, y) 
→ 1

g(x)
+ 1

g(y)
− 1

g(x + y)
,

(x, y, z) 
→ 1

g(x)
+ 1

g(y)
+ 1

g(z)
− 1

g(x + y)
− 1

g(y + z)
− 1

g(x + z)
+ 1

g(x + y + z)

and all similar n-fold alternating combinations are reciprocally concave on the strictly
positive orthant. The foundational case is g(x) := x. Even computing the Hessian in
a computer algebra system in say six dimensions is a Herculean task.

1.4 Some more applied examples

Another lovely advertisement for the power of convexity is the following reduction
of the classical Brachistochrone problem to a tractable convex equivalent problem.
As Balder [29] recalls

‘Johann Bernoulli’s famous 1696 brachistochrone problem asks for the optimal shape of
a metal wire that connects two fixed points A and B in space. A bead of unit mass falls
along this wire, without friction, under the sole influence of gravity. The shape of the wire
is defined to be optimal if the bead falls from A to B in as short a time as possible.’

Example 1.4.1 (Calculus of variations). Hidden convexity in the Brachistochrone
problem. The standard formulation, requires one to minimize

T ( f ) :=
∫ x1

0

√
1+ f ′2(x)√

g f (x)
dx (1.4.1)

over all positive smooth arcs f on (0, x1)which extend continuously to have f (0) = 0
and f (x1) = y1, and where we let A = (0, 0) and B := (x1, y1), with x1 > 0, y1 ≥ 0.
Here g is the gravitational constant.

A priori, it is not clear that the minimum even exists – and many books slough
over all of the hard details. Yet, it is an easy exercise to check that the substitution
φ := √

f makes the integrand jointly convex. We obtain

S(φ) := √
2gT (φ2) =

∫ x1

0

√
1/φ2(x)+ 4φ ′2(x) dx. (1.4.2)

One may check elementarily that the solutionψ on (0, x1) of the differential equation(
ψ ′(x)

)2
ψ2(x) = C/ψ(x)2 − 1, ψ(0) = 0,

where C is chosen to force ψ(x1) = √
y1, exists and satisfies S(φ) > S(ψ) for

all other feasible φ. Finally, one unwinds the transformations to determine that the
original problem is solved by a cardioid.
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