
Cambridge University Press & Assessment
978-0-521-84989-0 — Scientific Computation
Gaston H. Gonnet , Ralf Scholl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1
Determination of the accurate location

of an aircraft

In this chapter we want to find the most accurate location of an aircraft using infor-

mation from beacons. This is essentially the same problem that a GPS system or a

cellular phone has to solve.

Topics
� Non-linear least squares
� Statistical errors
� Function minimization
� Sensitivity analysis

The chapter is organized as follows:

� in Section 1.1 the problem is described,
� in Section 1.2 we will show how to model this problem mathematically,
� in Section 1.3 we will solve it analytically, and
� in Section 1.4 we will explore methods to analyze the solution we

have found.

In Appendix A we explore different minimization methods.

1.1 Introduction

Figure 1.1 illustrates a simplified typical situation of navigation with modern aircraft.

The airplane is in an unknown position and receives signals from various beacons.

Every signal from the beacons is assumed to contain some error. The main purpose

of this problem is to develop a method for computing the most likely position of the

aircraft based on all the information available.

We distinguish two kinds of beacons: very high frequency omnirange (VOR) and

distance measuring equipment (DME). The VOR beacons allow the airplane to read
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2 The accurate location of an aircraft

q2 = 45.1° ± 0.6°

864.3 km ± 2.0 km

q1 = 161.2° ± 0.8°

x1 = 746, y1 = 1393 
VOR1

x4 = 155, y4 = 987
DME

VOR2
x2 = 629, y2 = 375

x3 = 1571, y3 = 259
VOR3

position unknown
airplane

q3 = 309.0° ± 1.3°

~

~

~

Figure 1.1 Example of an aircraft and four beacons.

the angle from which the signal is coming. In other words, θ1, θ2 and θ3 are known

to the airplane. The DME beacon, using a signal that is sent and bounced back,

allows the distance from the airplane to the beacon to be measured. In this example

the distance is 864.3 km ± 2.0 km.

Each of the measurements is given with an estimate of its error. The standard

notation for measurements and errors is m ± n. This means that the true value

being measured lies between m − n and m + n. Different disciplines have different

interpretations for the statement “lies between.” It may mean an absolute statement,

i.e. the true value is always between the two bounds, or a statistical statement, i.e. the

true value lies within the two bounds z% of the time. It is also common to assume

that the error has a normal distribution, with average m and standard deviation n. For

our analysis, it does not matter which definition of the error range is used, provided

that all the measures use the same one.

We will simplify the problem by considering it in two dimensions only. That is,

we will not consider the altitude, which could be read from other instruments and

would unnecessarily complicate this example. We will denote by x and y the unknown

coordinates of the aircraft.
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3 1.1 Introduction

The input data are summarized in the following table.

x coordinate y coordinate value error

VOR1 x1 = 746 y1 = 1393 θ̃ 1 = 161.2◦ σ̃ 1 = 0.8◦

VOR2 x2 = 629 y2 = 375 θ̃ 2 = 45.1◦ σ̃ 2 = 0.6◦

VOR3 x3 = 1571 y3 = 259 θ̃ 3 = 309.0◦ σ̃ 3 = 1.3◦

DME x4 = 155 y4 = 987 d̃4 = 864.3 km σ̃ 4 = 2.0 km

aircraft x y

It is easy to see, that unless we are in a pathological situation, any pair of

two VOR/DME readouts will give enough information to compute x and y. If

the measurements were exact, the problem would be overdetermined with more

than two readouts. Since the measures are not exact, we want to compute x

and y using all the information available and, hopefully, obtain a more accurate

answer.

The standard measure of angles in aviation is clockwise from North in degrees. This

is different from trigonometry, which uses counterclockwise from East in radians.

Hence care has to be taken with the conversion from degrees to radians.

We do this step first and get the following results.

x coordinate y coordinate value error

VOR1 x1 = 746 y1 = 1393 θ̃ 1 = 5.0405 rad σ 1 = 0.014 rad

VOR2 x2 = 629 y2 = 375 θ̃ 2 = 0.784 rad σ 2 = 0.0105 rad

VOR3 x3 = 1571 y3 = 259 θ̃ 3 = 2.461 rad σ 3 = 0.023 rad

DME x4 = 155 y4 = 987 d̃4 = 864.3 km σ 4 = 2.0 km

aircraft x y

Definition of best approximation Find the aircraft position (x, y) which minimizes

the error in the following way.

� Regard the total error ε as a vector of all the measurement errors. This vector of

errors contains the error of each measurement for a value of (x, y); in our example

it has four components.
� As norm of this vector we use the usual euclidean norm ‖ε‖2 which is defined in our

example as ‖ε‖2 :=

√

∑4
i=1 ε2

i . (We could use other norms instead, for example

‖ε‖max := max(|εi |).)
� Find the (x, y) which minimizes the norm of the total error, hence for ‖ε‖2 use the

method of least squares (LS).
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4 The accurate location of an aircraft

1.2 Modelling the problem as a least squares problem

Under the assumption that the errors are normally distributed, it is completely appro-

priate to solve the problem of locating x and y by minimizing the sum of the squares

of the errors. On the other hand, if we do not know anything about the distribution of

the individual errors, minimizing the sum of their squares has a simple geometrical

interpretation, the euclidean norm, which is often a good idea. So, without further

discussion, we will pose the problem as a least squares (LS) problem.

We can relate the unknown exact position (x, y) of the airplane with the given

VOR positions (xi , yi ) for i = 1, . . . , 3 by:

tan(θ i ) =
x − xi

y − yi

(1.1)

where θ i is the angle to the unknown exact airplane position. Using the DME position

(x4, y4), we get the equation

d4 =
√

(x − x4)2 + (y − y4)2 (1.2)

for d4, the distance to the unknown exact position of the airplane.

Each of the measures is subject to an error. We will call these errors for the different

measures εi . Hence εi = θ i − θ̃ i , where θ i is the real value, θ̃ i is the actual measure

of the value and εi is the measurement error. (If the measure is given as m ± n,

θ̃ i = m.) For example, θ1 = 161.2 + ε1, and we mean θ1 is the exact angle and ε1 is

the error of the actual measurement.

Now the above Equations (1.1) and (1.2) can be written as:

tan(θ i ) = tan(θ̃ i + εi ) =
x − xi

y − yi

for i = 1, . . . , 3 (1.3)

d4 = d̃4 + ε4 =
√

(x − x4)2 + (y − y4)2. (1.4)

All the variables are related by this system of four equations in the six unknowns x ,

y, ε1, ε2, ε3, ε4. It is normally underdetermined, so we cannot determine the exact

position. Instead we are going to determine the solution which minimizes the norm

of the total error ε = (ε1, ε2, ε3, ε4).

The errors εi , when viewed as random errors, have a known average, namely 0

(since the measurement instruments are typically unbiased), and a known variance

or standard deviation. For example, ε1 has average 0 and a standard deviation 0.014

rad. In general for a measure mi ± σ i the associated error has average 0 and standard

deviation σ i or variance σ 2
i . If the errors are assumed to be normally distributed, then

they have a normal (gaussian) distribution N (0, σ 2
i ).

When we minimize the norm of ε it should be done on similarly distributed

variables εi . (We want to compare apples to apples and not apples to oranges.) To
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5 1.2 Modelling the problem as a least squares problem

achieve this, we will divide each εi by its standard deviation σ i . The normalized

errors εi/σ i have distribution N (0, 1).

So, since we are using the euclidean norm, that is, we want to minimize the length

of the “normalized” error-vector (ε1/σ 1, ε2/σ 2, ε3/σ 3, ε4/σ 4), we have to minimize
∑

(εi/σ i )
2 . Typically every error εi appears in only one equation, and hence it is

easy to solve for it, e.g.

ε4 =
√

(x − x4)2 + (y − y4)2 − d̃4 =
√

(x − 155)2 + (y − 987)2 − 864.3.

Inverting the equations for ε1,...,3 which contain the tangent function poses a small

technical problem because of the periodicity of the tangent function. tan(θ̂ i + εi ) =

(x − xi )/(y − yi ) for i = 1, . . . , 3 is always correct, but inverting, we obtain εi =

arctan((x − xi )/(y − yi )) − θ̃ i + kπ with k ∈ Z. Inverting trigonometric equations

with a computer algebra system like Maple will normally return the principal value,

that is a value between −π/2 and π/2, which may be in the wrong quadrant.

This brings two problems, one of them trivial, the second one more subtle. ThePRACTICAL NOTE

trivial problem is how to convert aviation angles, which after normalization will be

in the range from zero to 2π , to the range −π to π . This is done by subtracting 2π

from the angle if it exceeds π .

The second problem is that arctan returns values between −π/2 and π/2. This

means that opposite directions, for example the angles 135◦ and 315◦, are indistin-

guishable. This may result in an equation that cannot be satisfied, or if the angles

are reduced to be in the arctan range, then multiple, spurious solutions are possible.

To correct this problem we analyze the signs of x − xi and y − yi to determine the

correct direction, which is called quadrant analysis. This is a well known and common

problem, and the function arctan with two arguments in Maple (atan2 in C and

Java) does the quadrant analysis and returns a value between −π and π , resolving

the problem of opposite directions (arctan with two arguments also resolves the

problem of y − yi = 0 which should return π/2 or −π/2 but could cause a division

by zero).

Equation (1.3) should be rewritten as:

εi = arctan(x − xi , y − yi ) − θ̃ i .

Finally the sum of squares that we want to minimize in our example is

S(x, y) =

3
∑

i=1

(

arctan(x − xi , y − yi ) − θ̃ i

σ i

)2

+

(

√

(x − x4)2 + (y − y4)2 − d̃4

σ 4

)2

.

This problem is non-linear in its unknowns x and y as x and y are simultaneously

arguments of an arctan function and inside a square root function. This means that

an explicit solution of the least squares problem is unlikely to exist and we will have

to use numerical solutions.

See the interactive exercise “Least squares.”
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6 The accurate location of an aircraft

1.2.1 How to solve a mixed problem: equation system
and minimization

Suppose we want to minimize a function subject to constraints. This can be viewedBASIC

as solving a minimization jointly with a set (or system) of equations, the constraints.

Let eq1, eq2, . . . , eqi be the equations (constraints), and let f (x1, x2, . . . , xk) be the

function to be minimized.

A simple procedure to solve this problem is by substitution. It consists of the

following steps.

(i) Choose an equation eq j and an unknown in eq j . (This choice should be made

for the equation/unknown which is easiest to solve. The easiest case is solving

for an unknown which does not appear in any other equation, in our example

the ε j .)

(ii) Solve eq j for the unknown and substitute the value for this unknown in f and

in all other remaining equations.

(iii) Remove eq j from the set of equations.

When no more constraints are left we can minimize f in terms of the unknowns

that remain. The substituted variables can be computed from the minimal solution by

backsubstitution, if desired.

Notice that in our case, normally each error is associated with a measure and

each measure gives a constraint (equation). This error will not appear in any other

measure/equation. So we have a way of solving all equations easily by substitution.

See the interactive exercise “Measurement.”

1.3 Solving the non-linear least squares problem

To solve this problem we will use the computer algebra system Maple, since we need

to do some symbolic as well as numerical computations. First we define the input

data. We use the vectors X and Y to store the beacon coordinates and x and y for the

unknown coordinates of the airplane.

> theta := array([161.2,45.10,309.0]);

> sigma := array([0.8,0.6,1.3,2.0]);

> X := array([746,629,1571,155]);

> Y := array([1393,375,259,987]);

> d4 := 864.3;

www.cambridge.org/9780521849890
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-84989-0 — Scientific Computation
Gaston H. Gonnet , Ralf Scholl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

7 1.3 Solving the non-linear least squares problem

θ := [161.2, 45.10, 309.0]

σ := [0.8, 0.6, 1.3, 2.0]

X := [746, 629, 1571, 155]

Y := [1393, 375, 259, 987]

d4 := 864.3

The angles and the standard deviation of angles have to be converted to radians, as

described earlier. These are the calculations which were performed:

> for j from 1 to 3 do

> theta[j] := evalf(2*Pi*theta[j]/360);

> if theta[j] > evalf(Pi) then

> theta[j] := theta[j] - evalf(2*Pi)

> fi;

> sigma[j] := evalf(2*Pi*sigma[j] / 360);

> od:

> print(theta);

> print(sigma);

[2.813470755, 0.7871434929, −0.890117918]

[0.01396263402, 0.01047197551, 0.02268928028, 2.0]

We are now ready to construct the sum of squares.

> S := sum(((arctan(x-X[i],y-Y[i])-theta[i])/sigma[i])ˆ2, i=1..3)+

> +((((x-X[4])ˆ2+(y-Y[4])ˆ2)ˆ(1/2)-d4)/sigma[4])ˆ2;

S := 5129.384919 (arctan(x − 746, y − 1393) − 2.813470755)2

+ 9118.906531 (arctan(x − 629, y − 375) − 0.7871434929)2

+ 1942.488964 (arctan(x − 1571, y − 259) + 0.890117918)2

+ 0.2500000000 (
√

(x − 155)2 + (y − 987)2 − 864.3)2

Next we solve numerically for the derivatives equated to zero. In Maple, fsolve is a

basic system function which solves an equation or system of equations numerically.1

> sol := fsolve({diff(S,x)=0, diff(S,y)=0},{x=750,y=950});

sol := {x = 978.3070298, y = 723.9837773}

1
(x = 750, y = 950) is an initial guess to the solver fsolve. It will try to find a solution starting from

this point. This is useful for two reasons, first it improves the efficiency of the solver and secondly it

increases the chances that we converge to a minimum (rather than other places where the derivative is

zero like maxima or saddle points).
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8 The accurate location of an aircraft

A solution has been found and it is definitely in the region that we expect it to be. The

first measure of success or failure of the approximation is to examine the residues of

the least squares approximation. Under the assumption that the errors are normally

distributed, this will be the sum of the squares of the four N (0, 1) variables. Note that

E[x2
1 + · · · + x2

4 ] = 4 if xi ∼ N (0, 1)

but for the least squares sum S =
∑

i ε2
i we choose optimal x , y when we minimize

S. Therefore we expect

E[Smin] = 2

since this system has only two degrees of freedom.2 The norm squared of the

error is:

> S0 := evalf(subs(sol, S));

S0 := 0.6684712637

This value is smaller than 2, and hence it indicates that either we are lucky, or the

estimates for the errors were too pessimistic. In either case, this is good news for

the quality of the approximation. This together with the eigenvalue analysis from the

next section guarantees that we have found the right solution.

1.4 Error analysis/confidence analysis

A plain numerical answer, like the result from fsolve above, is not enough. We

would like to know more about our result, in particular its confidence. Confidence

analysis establishes the relation between a region of values T and the probability that

the correct answer lies in this region. In our case we are looking for a range of values

which are a “reasonable” answer for our problem, see Figure 1.2:

P[given T , the real answer is outside T ] =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

10−6 very precise

0.001 precise

0.01

0.05 reasonable

p in general.

2
The discussion on the degrees of freedom goes beyond the scope of this book. A simple rule of thumb

is that if our minimization, after substitution for all the constraints, has k variables left and we have n

errors, then the degrees of freedom are n − k. In this case: 4 − 2 = 2.
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9 1.4 Error analysis/confidence analysis

T

Figure 1.2 The exact position of the airplane is not known, we can only compute regions T

where the airplane is likely to be.

If the errors are assumed to be normally distributed, the sum of the squares of

the errors has a known distribution, called the χ2-distribution (read: chi-square

distribution).

We will work under the assumption that the errors of the measures have a

normal distribution. The distribution of S(x, y) is a χ2-distribution with four de-

grees of freedom, since it is a sum of squares of four variables which are N (0, 1)

distributed.3

For a given confidence level we can bound the value of χ2 and hence bound

the solution (x, y), for example by S(x, y) ≤ v with Pr({χ2
4 ≤ v}) = confidence.

This inequality defines an x, y area T , which is an area where the airplane will be

located with the given confidence. (Note: the bigger the confidence, i.e. the lesser the

probability of an error, the bigger is the area.)

Knowing its distribution allows us to define a confidence interval for the air-

plane position. Suppose that we are interested in a 95% confidence interval, then

S(x, y) < v ≈ 9.4877 (Figure 1.3), where this value is obtained from the inverse of

the cumulative (icdf) of the χ2-distribution. In Maple this is computed by:

> stats[statevalf,icdf,chisquare[4]](0.95);

9.487729037

The inequality S(x, y) < 9.4877 defines an area which contains the true values of x

and y with probability 95%. We can draw three areas for three different confidence

intervals, e.g. 50%, 95%, 99.9%, all of which are reference values in statistical

computations. Notice that the larger the confidence, the larger the ellipse (see Figure

1.4). And see the interactive exercise “Quality control.”

3
We do not regard S as a function of (x, y) in this case, since (x, y) is kept fixed (it should be the true

position of the airplane). Instead we regard S as a random variable, since it still depends on the four

measurements, which are random variables. Since these measurements contain independent, normally

distributed errors ε1, . . . , ε4, S has a χ2-distribution with four degrees of freedom.
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10 The accurate location of an aircraft

p = 95%
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v = 9.4877

Figure 1.3 The probability density function of a χ2-distribution with four degrees of freedom.

1.4.1 An approximation for a complicated S

For complicated S(x, y), finding the area may be computationally difficult. So we

will show how to use an approximation. We will expand the sum of the squares of

the errors as a Taylor series around the minimum and neglect terms of third and

higher order. So let S(x, y) = S( p) be the sum of squares, which we will define as a

function of the position vector p = (x, y)T. Let p0 be the solution of the least squares

problem. Then the three-term Taylor series around p0 is

S( p) = S( p0) + S′( p0)( p − p0) +
1

2
( p − p0)TS′′( p0)( p − p0) + O(‖ p − p0‖

3).

The gradient of S, S′( p) = (Sx , Sy)T, is always zero at the minimum, and a numerical

check shows that the gradient in our example is indeed within rounding error of

(0, 0):

> S1 := evalf(subs(sol,linalg[grad](S,[x,y])));

S1 := [0.36 × 10−7, −0.6 × 10−8]
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