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Preface

This text results from a new approach to teaching the sophomore engineer-

ing course entitled Introduction to Engineering Systems at Harvey Mudd

College. Since the course is required of all students regardless of major, the

goal is to provide a clear understanding of concepts, tools, and techniques

that will be beneficial in engineering, physics, chemistry, mathematics, bi-

ology, and computer science. Cha, Rosenberg, and Dym’s Fundamentals

of Modeling and Analyzing Engineering Systems,1 written specifically for

this course and providing an excellent introduction to the modeling and

analysis of systems from a wide variety of disciplines, was used for several

years. This text complements that text’s focus on modeling with a strong

emphasis on representation of continuous-time and discrete-time signals in

both the time and frequency domains, modeling of mechanical and electri-

cal systems, and the design of finite impulse response (FIR) discrete filters.

Fundamentals of Modeling and Analyzing Engineering Systems and this text

can be used together in a two-semester sequence to provide a thorough intro-

duction to both signal processing and modeling, or selected topics from both

can be used as the basis for a one-semester course. The sampling theorem,

continuous-to-discrete and discrete-to-continuous converters, the discrete

Fourier transform (DFT) and its computation with the fast Fourier trans-

form (FFT) are explained in detail. Students are introduced to M AT L A B

and get hands-on experience with a series of laboratory assignments that

illustrate and apply the theory. Single variable calculus is the only essential

background although some knowledge of differential equations, linear al-

gebra, and vector spaces is helpful. The materials covered in this text have

1 Fundamentals of Modeling and Analyzing Engineering Systems by P. D. Cha, J. J. Rosenberg
and C. L. Dym, Cambridge University Press, UK, 2000.
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xxiv Preface

grown out of lectures given primarily to sophomores at Harvey Mudd Col-

lege. These notes have been classroom-tested over a period of six semesters.

Engineers, scientists, and mathematicians are increasingly faced with

acquiring, processing, interpreting, and extracting information from data,

which are usually provided as a series of discrete samples, independent

of whether the original underlying signals and systems were continuous

or discrete in nature. Discrete-time techniques are used almost exclusively

for simulating both continuous-time and discrete-time systems. Effective

use of modern analysis, design, and simulation tools such as M AT L A B

require a clear understanding of the underlying theory as well as a good bit

of practice with applications.

We begin by developing representations of continuous-time signals as

functions and discrete-time signals as sequences (Chapter 1). We then

explore various transformations such as shifts, reversal, compression,

and expansion for continuous-time signals. We also cover upsampling

and downsampling for discrete-time signals. Next, the construction of

complicated signals from basic building blocks is introduced using the

orthogonality principle (Chapter 2). This provides the foundation and con-

text for the later focus on complex exponentials and the Fourier series. By

starting with the generally applicable approach of minimizing the integrated

squared error through the use of the orthogonality principle, the student is

given a much deeper understanding and appreciation for a broad class of ap-

plications, including the use of Walsh functions in cellular phones to various

series expansions using a variety of building blocks or basis functions. The

difference between the orthogonality principle and orthogonal basis func-

tions is carefully explained. An appendix provides a natural development

of basis functions starting with the familiar three-dimensional vectors.

Complex exponentials as building blocks provide the foundation for the

development of the spectrum of a continuous-time signal. Its importance

in characterizing and extracting information from signals leads naturally to

the need for numerical techniques to compute the spectrum of complicated

signals produced by phenomena such as earthquakes, space photographs or

communication systems. This, in turn, leads to the discrete Fourier trans-

form and its efficient computation using the fast Fourier transform algo-

rithm. While we do not derive the fast Fourier transform algorithm, the text

describes its use in considerable detail and laboratory exercises provide the

opportunity for students to explore practical applications.
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xxv Preface

Continuous-time and discrete-time signals are connected via the sam-

pling theorem (Chapter 3). The spectrum of a discrete-time signal provides

the basis for exploring the phenomena of aliasing and folding, which must

be fully understood in order to correctly acquire, process, analyze and in-

terpret data. The behavior of continuous-to-discrete (analog-to-digital) and

discrete-to-continuous (digital-to-analog) converters is explored as the cul-

mination of the first part of the text.

The next major division of the text is devoted to the lumped element

modeling of mechanical and electrical systems (Chapters 4 and 5). We start

with the basic elements (building blocks) for mechanical systems consisting

of springs, dampers, and masses. First-order and second-order governing

equations are developed and canonical forms are defined for both the trans-

lational and rotational systems. Parallel and series combinations of elements

as well as the division of force and displacement are covered. A parallel

development for electrical systems leads naturally to the force–current and

velocity–voltage analogs. Solution of first-order and second-order differ-

ential governing equations is introduced, transient response specifications

are defined that are used in system design, and a state space approach is

formulated as an alternative means to analyze the free and forced responses

of a system (Chapter 6).

Frequency response builds on the concept of the complex exponential

building blocks that are covered in the first part of the text (Chapter 7).

The complex exponentials also serve as the eigenfunctions of linear time-

invariant systems, and the concept of frequency response provides the bridge

between signals and systems. Bode plots of first-order and second-order

factors are developed. The complex exponential building blocks and the

concept of frequency response are then used to define impedance and its

application in combining various elements of mechanical and electrical

systems.

An introduction to the analysis and design of finite-impulse response

filters forms the final major part of the text (Chapter 8). The ease with which

arbitrary frequency response functions can be implemented is developed as

another application of the Fourier series and demonstrated with a whimsical

example. A series of applications from a variety of disciplines then follows,

providing the student with an appreciation of the power and scope of the

concepts, tools, and techniques developed throughout the text (Chapter 9).

The text concludes with a short transition section designed to relate the

fundamentals to concepts covered in more advanced texts (Chapter 10).
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xxvi Preface

This text offers numerous special features that distinguish itself from

other texts on signals and systems, and they are summarized in the following:

� A rigorous development of the construction of signals from building

blocks (basis functions) via the orthogonality principle is given.
� The building block approach to develop a clear understanding of the spec-

tra of both continuous-time and discrete-time signals as well as the fre-

quency responses of continuous-time and discrete-time systems all with-

out the use of the continuous-time impulse, Fourier transform, or Laplace

transform is used.
� A solid understanding of the use of the FFT in extracting information

from signals and determining the response of electrical and mechanical

systems to realistic inputs is provided.
� Signal processing and systems modeling are treated on equal footing.

Electrical engineering departments usually teach systems with primary

emphasis on signal processing while mechanical engineering departments

put the primary emphasis on dynamic modeling and control. In order to

cover all of the desired topics, this text does not include the control of

dynamical systems. This is a conscious decision the authors made in order

to present a complete end-to-end analysis from characterizing the input

signal, to modeling the physical system, to determining the response or

output of the system to arbitrary inputs.
� A thorough treatment of the modeling of complicated mechanical and

electrical systems is provided. The analogy between lumped mechanical

and electrical systems is introduced in detail.
� Detailed examples of characterizing both simple and realistic (compli-

cated) input signals, modeling physical systems, and determining their

response to these inputs are provided. Most modeling texts focus exten-

sively on how to describe the physical system and determine its response

to classical inputs such as impulse, step, and sinusoid. In addition to these

standard inputs, this text shows how complicated inputs can be repre-

sented using simple building blocks, thus allowing the determination of

the response of systems to realistic inputs.

Finally, seven M AT L A B laboratory exercises are included at the end of

the text to allow students to gain a deeper understanding and mastery of the

topics covered in the text. We hope that the use of computational software

will enhance the learning experience and stimulate the students’ interest in

signals and systems.
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