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A Preview

A. A BRIEF HISTORICAL PERSPECTIVE OF TRANSPORT PHENOMENA
IN CHEMICAL ENGINEERING

“Transport phenomena” is the name used by chemical engineers to describe the subjects of
fluid mechanics and heat and mass transfer. The earliest step toward the inclusion of spe-
cialized courses in fluid mechanics and heat or mass transfer processes within the chemical
engineering curriculum probably occurred with the publication in 1923 of the pioneering
text Principles of Chemical Engineering by Walker, Lewis, and McAdams.1 This was the
first major departure from curricula that regarded the techniques involved in the produc-
tion of specific products as largely unique, to a formal recognition of the fact that certain
physical or chemical processes, and corresponding fundamental principles, are common to
many widely differing industrial technologies.

A natural outgrowth of this radical new view was the gradual appearance of fluid
mechanics and transport in both teaching and research as the underlying basis for many
of the unit operations. Of course, many of the most important unit operations take place
in equipment of complicated geometry, with strongly coupled combinations of heat and
mass transfer, fluid mechanics, and chemical reaction, so that the exact equations could
not be solved in a context of any direct relevance to the process of interest. Hence, insofar
as the large-scale industrial processes of chemical technology were concerned, even at the
unit operations level, the impact of fundamental studies of fluid mechanics or transport
phenomena was certainly less important than a well-developed empirical approach (and
this remains true today in many cases). Indeed, the great advances and discoveries of fluid
mechanics during the first half of the twentieth century took place almost entirely without
the participation (or even knowledge) of chemical engineers.

Gradually, however, chemical engineers began to accept the premise that the generally
“blind” empiricism of the “lumped-parameter” approach to transport processes at the unit
operations scale should at least be supplemented by an attempt to understand the basic
physical principles. This finally led, in 1960, to the appearance of the landmark textbook
of Bird, Stewart, and Lightfoot,2 which not only introduced the idea of detailed analysis of
transport processes at the continuum level, but also emphasized the mathematical similarity
of the governing field equations, along with the simplest constitutive approximations for
fluid mechanics and heat and mass transfer. The presentation of Bird et al. was primarily
focused on results and solutions rather than on the methods of solution or analysis. However,
the combination of the more fundamental approach that it pioneered within the chemical
engineering community and the appearance of chemical engineers with very strong mathe-
matics backgrounds produced the most recent transitions in our ways of thinking about and
understanding transport processes.
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Initially, this was focused largely on the use of asymptotic and numerical methods for
detailed analysis and understanding of the important correlations between the dependent
and independent dimensionless groups in flow and transport processes relevant to large-
scale engineering applications. Although asymptotic approximation methods were initially
the product of applied mathematicians, chemical engineers now played an extremely impor-
tant role in their application to many transport processes and viscous flow phenomena. A
critical component in this approach is nondimensionalization by means of characteristic
scales to identify dominant physical balances and the use of this approach in approximating
(simplifying) the governing equations and boundary conditions.

Another simultaneous development within chemical engineering was a major focus
on flows at very low Reynolds number, at least partly motivated by the classic book
Low Reynolds Number Hydrodynamics by Happel and Brenner,3 originally published in
1965. Initially, the primary application of creeping-flow theory was to the analysis of sus-
pensions, emulsions, and other particulate materials, in combination with the effects of
Brownian motion that typically play an important role for particulates with length scales
of 10 µm or less. More recently, the scale of many processes of interest has decreased, to
the point that there is sometimes a need to incorporate “nonhydrodynamic” forces such
as van der Waals forces that act over very short length scales. Furthermore, the recent
development of microelectromechanical system technology, mainly focused on very small-
scale flow systems, and many of the applications of fluid mechanics and biotransport, have
provided a further emphasis on the importance of a fundamental understanding of vis-
cous flow and transport phenomena. Finally, the relevance of interfacial phenomena and
of non-Newtonian rheology associated with complex fluids such as polymeric liquids has
additionally broadened the scope of what chemical engineers are likely to encounter as
“transport phenomena.”

Finally, we cannot overlook the development of computational tools for the solution of
problems in fluid mechanics and transport processes. Methods of increasing sophistication
have been developed that now enable quantitative solutions of some of the most complicated
and vexing problems at least over limited parameter regimes, including direct numerical
simulation of turbulent flows; so-called free-boundary problems that typically involve large
interface or boundary deformations induced by flow; and methods to solve flow problems
for complex fluids, which are typically characterized by viscoelastic constitutive equations
and complicated flow behavior.

B. THE NATURE OF THE SUBJECT

The study of fluid mechanics and convective transport processes for heat or molecular
species is an old subject. Provided that we limit ourselves to Newtonian fluids and to
flow domains involving only solid boundaries, there is no question of understanding the
underlying physical principles that govern a problem, at least from a continuum mechanical
point of view. On a point-by-point basis, these are represented by the Navier–Stokes and
thermal energy (or species transport) equations, with boundary conditions that are generally
well established.4 These equations and boundary conditions (at least for solid boundaries)
have been known for more than a century. Yet these subjects are still extremely active
topics of basic research, and, for the most part, this research is aimed at the discovery
of new phenomena and principles of fluid motion, rather than the engineering application
of previously discovered phenomena to new systems. Although the underlying physical
principals are completely understood for this class of fluids, the macroscopic phenomena
that are inherent in these physical principles can be extremely complex. From a mathematical
point of view, this is largely because the governing equations (and the boundary conditions
too at a fluid interface) are nonlinear. However, one need think only of the amazing variety
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of fluid flow phenomena that are encountered in everyday experience to recognize the
complexity allowed by the well-known fundamental principles.

Examples include the dynamics of waves and of breaking waves at a beach; the complex
“mixing” flows created by a spoon moving through a cup of coffee; the dripping of water
from a tap; the bathtub vortex as water drains from a tub; or the complicated coiling motion
of honey dripping from a knife onto a slice of toast. We may also think of the changes in
flow structure that can be caused by variations in the flow rate, even when the geometry
of the boundaries and all the fluid properties are fixed. Likely familiar to most readers is
the transition in pressure-driven flow through a circular tube, from a one-dimensional time-
independent “laminar” flow at low flow rates to a fully three-dimensional time-dependent
“turbulent” flow when the flow rate is increased beyond some critical value. Perhaps less
familiar is the flow produced by the translational motion of a cylindrical body perpendicular
to its axis through an otherwise stationary Newtonian fluid. The motion of the fluid in all
circumstances is governed by the Navier–Stokes equations, yet the range of observable flow
phenomena that occur as the velocity of the cylinder is increased is quite amazing, beginning
at low speeds with steady motion that follows the body contour, and then followed by a
transition to an asymmetric motion that includes a standing pair of recirculating vortices at
the back side of the cylinder, which are at first steady and attached and then become unsteady
and alternately detached as the velocity increases. Finally, at even higher speeds the whole
motion in the vicinity of the cylinder and downstream becomes three dimensional and
chaotic in the well-known regime of turbulent flow. All of these phenomena are inherent
in the physical principles encompassed in the Navier–Stokes equations. It is “only” that
the solutions of these equations (namely, the physical phenomena) become increasingly
complex with increase in the velocity of the cylinder through the fluid. Generally, then, for
Newtonian fluids, the basic objective is to understand the physics of the flow rather than the
underlying physical principles.

In a sense, we can visualize the physics of a flow by carrying out laboratory experiments,
or by observing natural flows directly. When this is not possible or is not feasible, the advent
of increasingly powerful computers and numerical techniques sometimes allow a “computa-
tional experiment” to be carried out, based on the known governing equations and boundary
conditions. It is unfortunate that a qualitative description, or even flow-visualization pic-
tures, of complex phenomena do not translate immediately into “understanding.” Obviously,
if this were the case, it would be possible to provide students with a much more realistic pic-
ture of real phenomena than they can hope to achieve in the normal classroom (or textbook)
environment. The difficulty with a qualitative description is that it can never go much beyond
a case-by-case approach, and it would clearly be impossible to encompass all of the many
flow or transport systems that will be encountered in technological applications. The present
book does not provide anything like a catalog of physically interesting phenomena. Hope-
fully, the reader will have already encountered some of these in the context of undergraduate
laboratory studies or personal experience. There is also at least one textbook5 that attempts
(with some success) to fill the gap between “analytic technique” and “physical phenomena”
in fluid mechanics, and this can provide an important complement to the material presented
here. In fluid mechanics, there is also a very useful video series available from Cambridge
University Press for a very nominal cost, “Multi-Media Fluid Mechanics,” which is an
excellent source of visual exposure to real phenomena, coupled with useful physical expla-
nations as well.6 Finally, every student and teacher of fluid mechanics should examine the
wonderful collection of photos in the book An Album of Fluid Motions by Van Dyke,7 the
series of articles “A Gallery of Fluid Motion,” published annually in Physics of Fluids, and
the recent compilation of highlights from these articles published as a book by Cambridge
University Press, and also titled A Gallery of Fluid Motion.8 The events depicted in these
latter photographs provide a graphic reminder of the vast wealth of complex, important,
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and interesting phenomena that are encompassed within fluid mechanics. Clearly the fluid
mechanics and heat and mass transfer presented in the classroom or by any textbook only
scratch the surface of this fascinating subject.

C. A BRIEF DESCRIPTION OF THE CONTENTS OF THIS BOOK

The material in this book is the basis of an introductory (two-term) graduate course on
transport phenomena. It starts (in Chap. 2 of the book that is subsequently described in
more detail) with a derivation of all of the necessary governing equations and boundary
conditions in a context that is intended to focus on the underlying fundamental principles
and the connections between this topic and other topics in continuum physics and thermo-
dynamics. Some emphasis is also given to the limitations of both equations and boundary
conditions (for example, “non-Newtonian” behavior, the “no-slip” condition, surfactant and
thermocapillary effects at interfaces, etc.). It should be noted, however, that, though this
course starts at the very beginning by deriving the basic equations from first principles and
thus can be taken successfully even without an undergraduate transport background, there
are important topics from the undergraduate curriculum that are not included, especially
macroscopic balances, friction factors, correlations for turbulent flow conditions, etc.

The remainder of the book is more or less concerned with how to solve transport
and fluids problems analytically, but with a lot of emphasis on basic physics, scaling and
nondimensionalization, and approximations that can be used to obtain solutions that are due
either to geometric simplifications or large or small values of dimensionless parameters. I
am more specific in the following subsections, but it is important to note that there is a strong
emphasis on setting the problem up and extracting as much information as possible short
of obtaining detailed solutions of differential equations. The book reflects my bias that it is
more important for students to see moderate numbers of problems with enough detail so that
they can follow the analysis and the thinking behind the analysis from the beginning to the
end. Although the problems chosen are obviously not going to be identical in most cases to
a research problem that students may encounter later, they are chosen to expose students
to many qualitative phenomena, and one may hope that with this background behind them
they may be able to actually use the material in some future “application.” At the minimum,
they should be able to read and understand the research literature on any transport-related
problem that arises in their later work, including an understanding of the approximations or
limitations, etc. In what follows, I outline the content of the various chapters, including the
most important ideas or concepts that I hope a student or reader will extract.

Chapter 2: The Basic Principles
This book begins with a detailed derivation of the governing equations and boundary con-
ditions for fluid mechanics and convective transport processes. Some emphasis is placed
on understanding the limitations of these equations and boundary conditions, including the
origins of non-Newtonian behavior. We also consider, in some detail, the boundary condi-
tions at a fluid interface and the role of surfactants when these are present. At several points
in this chapter, we begin to think qualitatively about flows, and particularly what we may
anticipate about flows that are driven by body forces (gravity) in the presence of density
gradients and by capillary forces that are due either to gradients in the interface curvature
or to surface-tension gradients.

Chapter 3: Unidirectional and One-Dimensional Flow and Heat
Transfer Problems
This chapter is primarily concerned with the most general class of problems for which an
“exact” analytic solution is possible. Thus it is used to review classical methods of solution
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for linear partial differential equations, but that is not really the main point. The main
point is to introduce the concepts of characteristic scales, nondimensionalization, dynamic
similarity, diffusive time scales and their role in the transient evolution of flows and transport
processes, and self-similarity for problems that do not exhibit characteristic scales. There is
also a discussion of Taylor diffusion that does not exhibit an exact solution of the transport
equations, but is an important and interesting problem of transport in a unidirectional flow
with many applications. By the time we finish this chapter, there should be no doubt about
how to nondimensionalize problems, how to solve problems that can be reduced to a linear
form, and the reader will also have seen the first examples of using characteristic scales to
think about transport problems.

Chapter 4: An Introduction to Asymptotic Approximations9

In this chapter, we discuss general concepts about asymptotic methods and illustrate a
number of different types of asymptotic methods by considering relatively simple transport
or flow problems. We do this by first considering pulsatile flow in a circular tube, for which
we have already obtained a formal exact solution in Chap. 3, and show that we can obtain
useful information about the high- and low-frequency limits more easily and with more
physical insight by using asymptotic methods. Included in this is the concept of a boundary
layer in the high-frequency limit. We then go on to consider problems for which no exact
solution is available. The problems are chosen to illustrate important physical ideas and also
to allow different types of asymptotic methods to be introduced:

(a) We consider viscous dissipation effects in shear flow and indicate what it may have to
do with the use of a shear rheometer to measure viscosities.

(b) We consider flow in a tube that is slightly curved. This illustrates that the flows in straight
and curved tubes are fundamentally different with potentially important implications
for transport processes.

(c) We consider flow in a wavy-wall channel primarily to show how “domain perturbation
methods” can be used to turn this problem into a simpler problem that we can solve as
flow in a straight-wall channel with “slip” at the boundaries.

(d) We consider a simple model problem of transport inside a catalyst pellet with fast
reaction to illustrate another example of a boundary-layer-type problem.

(e) Finally there is a longish section on the dynamics of a gas bubble in a time-dependent
pressure field that introduces ideas about linear stability analysis and its connection to
perturbation methods, resonance when the forcing and natural frequencies of oscillation
match, and multiple-time-scale asymptotic methods to analyze resonant behavior.

Chapter 5: The Thin-Gap Aproximation – Lubrication Problems
One important class of problems for which we can obtain significant results at the first level
of approximation is the motion of fluids in thin films. In this and the subsequent chapter,
we consider how to analyze such problems by using the ideas of scaling and asymptotic
approximation. In this chapter, we consider thin films between two solid surfaces, in which
the primary physics is the large pressures that are set up by relative motions of the boundaries,
and the resulting ideas about “lubrication” in a general sense.

(a) The basic ideas are introduced by use of the classic problem of the eccentric Couette
problem, called the “journal-bearing problem” in the lubrication literature. This problem
is advantageous because the thin-gap approximation is uniformly valid throughout the
domain in the so-called narrow-gap limit.

(b) Following this, we derive the thin-film/lubrication equations from a more general point
of view; one result of this general analysis is the famous Reynolds equation of lubrication
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theory, but we consider how to analyze such problems from a fundamental point of view
that can be adapted to many applications even when it may not be immediately obvious
how to apply the Reynolds equation.

(c) In the last sections, we consider several examples:
(1) the so-called “slider-block problem”;
(2) the motion of a sphere near a solid bounding wall, which leads to the conclusion

that the sphere will not come into contact with the wall in finite time if it is moving
under the action of a finite force and the surfaces are smooth;

(3) an analysis of the dynamics of the disk on an air hockey table. This problem is
amenable to “standard” lubrication theory when the blowing velocity is small enough
(though still large enough to maintain a finite gap between the disk and the tabletop),
but requires a boundary-layer-like analysis when the blowing velocity is large (even
though the thin-film approximation is still valid).

Chapter 6: The Thin-Gap Approximation – Films with a Free Surface
The second basic class of thin-film problems involves the dynamics of films in which the
upper surface is an interface (usually with air). In this case, the same basic scaling ideas
are valid, but the objective is usually to determine the shape of the upper boundary (i.e., the
geometry of the thin film), which is usually evolving in time.

A typical example is a spreading film on a solid substrate, and we begin with this
class of problems. Analysis of this class of thin-film problems requires use of the interface
boundary conditions derived in Chap. 2 and also revisits a number of examples of capillary
and Marangoni flow problems that were discussed qualitatively in Chap 2. The governing
equation for the thin-film shape function often takes the form of a “nonlinear diffusion
equation,” and this allows the scaling behavior of the thin-film dynamics to be deduced by
means of a similarity transformation (“advanced” dimensional analysis), without necessarily
solving the resulting nonlinear equation. For example, for the spreading of an axisymmetric
film (or drop) on a solid substrate caused by capillary effects, we can deduce the famous
Tanner’s law that the radius of the contact circle should increase as R(t) ∼ t1/10 without
solving equations. These are great examples for illustrating what we can get from seeking
the form of self-similar solutions.

We then go on consider the role of van der Waals forces on the dynamics of a thin film.
First we consider the stability of a horizontal fluid layer (which is bounded either above
or below by a solid substrate) due to the coupled interactions of gravity, capillary forces,
and van der Waals forces across the film. This allows us to introduce the ideas of a linear
stability analysis and leads to interesting and important results. We then consider the actual
rupture process of a thin film with van der Waals forces present. In particular, we show that
the final stages of the rupture process, including the geometry of the film and the scaling
of the process with time, can be analyzed again by means of a similarity transformation
(without solving equations).

Finally, we consider a number of problems involving nonisothermal flows in a shallow
cavity. The motion in this cavity may be due to buoyancy caused by differential heating
of the end walls or to thermocapillary flow that is due to Marangoni stresses at the upper
interface, again with differential heating at the end walls. These problems are idealized
models for a number of important applications; for example, the latter case is a model for
the “liquid bridge” in containerless processing of single crystals. The objective of analysis
is the flow and temperature fields, but also the shape of the free surface. It is shown that the
interface shape problems can be analyzed both by means of the classic thin-gap approach of
preceding sections of this chapter and also by the method of “domain perturbations,” first
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introduced in Chap. 4. These latter problems focus again on the important issue of interfacial
boundary conditions and the role of capillary and thermocapillary effects in flow.

Chapter 7: Creeping Flows (Two-Dimensional
and Axisymmetric Problems)10

We begin, in this chapter and the next, with the class of flow problems for general geome-
tries in which the dynamics is dominated by the balance between pressure gradients and the
viscous terms in the Navier–Stokes equation. This class of problem is known collectively
as “creeping” flows. In the first of these two chapters, we initially consider nondimensional-
ization, the role of the Reynolds number for this general class of problems, the concepts of
quasi-steady flow, and some extremely important consequences of the fact that the govern-
ing equations in the creeping-flow limit are linear. The latter material is important beyond
the several examples considered, because it forces the student to think about what can be
said about the solution of linear problems without actually solving any equations. We then
go on in this chapter to consider two-dimensional and axisymmetric problems that can be
solved by introducing the concept of a streamfunction. This leads to a single fourth-order
partial differential equation and the natural use of general eigenfunction expansions. The
following specific problems are solved:

(a) 2D corner flows (scraping, mixing, etc.),
(b) uniform flow past a solid sphere (the classic Stokes problem),
(c) axisymmetric extensional flow in the vicinity of a solid sphere and the use of this result

to derive the famous Einstein expression for the viscosity of a dilute suspension of
spheres,

(d) the buoyancy-driven translation of a drop through a quiescent fluid including the fact
that the shape is a sphere independent of the interfacial tension,

(e) motions of drops driven by Marangoni stress in a nonuniform temperature field,
(f) the effects of surfactants on the buoyancy-driven motion of a drop.

These problems are chosen because they illustrate important ideas and concepts in addition
to simply solving problems. However, the analysis in this chapter is completely based on
classical eigenfunction expansions.

Chapter 8: Creeping Flows (Three-Dimensional Problems)11

We begin this chapter in Sections A–C by discussing the construction of solutions to the
creeping-flow equations by representing the solutions in terms of “vector harmonic func-
tions.” It is shown that one can literally write the solutions of a whole class of problems
almost by inspection, thus eliminating the need for the laborious eigenfunction expansions
of Chap. 7 even for the two-dimensional and axisymmetric problems for which they can be
used, but also simultaneously obtaining the solutions for fully three-dimensional problems
(e.g., a sphere in a linear shear flow). The main requirement is that the boundaries of the flow
domain must correspond approximately to surfaces in a known analytic coordinate system.
In this chapter, we consider problems that we can solve by using vector harmonic functions
in a spherical coordinate system. The method is illustrated for a number of examples includ-
ing both problems with axisymmetric symmetry that we could solve by using the methods
of Chap. 7, and problems such as particle motion in a linear shear flow that we could not
solve by using these methods. We conclude in Section C by considering the motion of drops
in general linear (shearlike) flows, including an illustration of how to estimate the deformed
shape of the drop in the flow.

In subsequent sections of this chapter we discuss the use of fundamental solutions of
the creeping-flow equations to construct solutions for which the flow domain has a more
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general geometry. This includes “slender-body” theory for slender rodlike objects, and an
introduction to a powerful method known as the “boundary-integral” technique that can
be implemented numerically to solve virtually any creeping-flow problem, including those
with complex or unknown (possibly evolving) geometries. Other sections illustrate general
results that can be obtained because of the linearity of creeping-flow problems, with an
emphasis on illustrating general physical phenomena for this class of problem.

Chapter 9: Convection Effects and Heat Transfer for Viscous Flows
Now that we have learned how to solve for the detailed velocity fields for at least one class
of flow problems (creeping/viscous flows), we turn to a general introduction to convection
effects for heat transfer (primarily) for this class of flows.

We begin by considering the nondimensional form of the thermal energy equation,
leading to the recognition of the Peclet number (the product of the Reynolds number and the
Prandtl number) as the critical independent parameter for “forced” convection heat transfer
problems. At the end of this section, we briefly discuss the analogy with mass transfer in
a two-component system, with the Schmidt number replacing the Prandtl number and the
Sherwood number replacing the Nusselt number.

The limit Pe → 0 yields the pure conduction heat transfer case. However, for a fluid in
motion, we find that the pure conduction limit is not a uniformly valid first approximation
to the heat transfer process for Pe � 1, but breaks down “far” from a heated or cooled
body in a flow. We discuss this in the context of the “Whitehead” paradox for heat transfer
from a sphere in a uniform flow and then show how the problem of forced convection heat
transfer from a body in a flow can be understood in the context of a singular-perturbation
analysis. This leads to an estimate for the first correction to the Nusselt number for small
but finite Pe – this is the first “small” effect of convection on the correlation between Nu
and Pe for a heated (or cooled) sphere in a uniform flow.

We then return briefly to consider the creeping-flow approximation of the previous two
chapters. We do this at this point because we recognize that the creeping-flow solution is
exactly analogous to the pure conduction heat transfer solution of the preceding section
and thus should also not be a uniformly valid first approximation to flow at low Reynolds
number. We thus explain the sense in which the creeping-flow solution can be accepted as
a first approximation (i.e., why does it play the important role in the analysis of viscous
flows that it does?), and in principle how it might be “corrected” to account for convec-
tion of momentum (or vorticity) for the realistic case of flows in which Re is small but
nonzero.

We then go on to consider the generalization of the analysis of heat transfer problems for
small Peclet numbers. These generalizations clearly illustrate the power of the asymptotic
method to provide insight into the form of correlations between dimensionless parameters,
with a minimum of detailed analysis. First, we show that the detailed analysis that we
developed for a sphere actually can be applied with no extra work to obtain the first correction
to Nu for bodies of arbitrary shape in a uniform flow (or where the body is sedimenting
through an otherwise motionless fluid). Next, we consider heat transfer from a sphere in a
shear flow. The purpose of this is to show that the same theoretical framework can be applied
again, but that the form of the correlation between Nu and Pe changes if the nature of the
flow is changed. Again, the analysis for a sphere in linear shear flow can be generalized
with little additional work to obtain the correlation for any linear flow and for bodies of
arbitrary shape.

The second half of this chapter considers the opposite limit in which Pe � 1. In this
case, the superficial conclusion is that heat transfer must be dominated everywhere by
convection. However, this cannot be true, as the only mechanism for heat transfer from the
surface of a body to a surrounding fluid is by conduction. This leads to the concept of the
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thermal boundary layer and a fundamentally different form for the correlation between Nu
and Pe.

Chapter 10: Boundary-Layer Theory for Laminar Flows
The concept of a boundary layer is one of the most important ideas in understanding trans-
port processes. It is based on the idea that transport systems often generate internal length
scales so that dissipative effects (or diffusive effects in the case of heat transfer or mass
transfer) continue to play an essential role even in the limit as the viscosity (or the diffu-
sivity) becomes smaller and smaller. In this chapter, we continue the development of these
ideas, first introduced at the end of the previous chapter, by considering their application
to the approximate solution of fluid mechanics problems in the asymptotic limit of large
Reynolds number. The chapter begins with a section on potential-flow theory, namely the
solutions of the equations of motion when viscous effects are completely neglected. We find
that the predictions that leave out viscous effects are fatally flawed for some problems such
as flow past a circular cylinder, leading to the famous d’Alembert’s paradox, which says that
the drag on bodies at high Reynolds number is zero. This occurs mainly because potential-
flow theory cannot predict the asymmetry that is responsible for boundary-layer separation
and the dominance of “form” drag for nonstreamlined bodies. The next section of the chap-
ter develops the key ideas of the asymptotic boundary-layer theory. This is first applied to
the classic Blasius problem of flow past a horizontal flat plate and then considers the class
of problems in which self-similar solutions of the boundary-layer equations are possible.
This is followed by the Blasius series solution for flow past nonstreamlined bodies and the
application of this theory to the problem of flow past a circular cylinder. This exposes a key
result, which is the ability of boundary-layer theory to predict the onset of “separation” and
thus to determine whether a two-dimensional body (such as an airfoil) is sufficiently stream-
lined to avoid “form” drag. We then consider the generalization of boundary-layer theory
to axisymmetric geometries. Finally, we address the question of boundary layers on a free
surface, such as an interface, by considering the application of boundary-layer concepts to
the motion of a spherical bubble at high Reynolds number. This section is perhaps the most
important one in the chapter from a pedagogical point of view, because it challenges most of
the simplistic ideas that students may have from undergraduate transport courses, and forces
them to see that boundary layers are applicable to a very broad class of problems. For exam-
ple, the question of a boundary layer on a bubble forces students to reconsider the simplistic
(and often incorrect) idea that a boundary layer exists because of the no-slip condition.

Chapter 11: Heat and Mass Transfer at Large Reynolds Number
In this chapter, we return to forced convection heat and mass transfer problems when the
Reynolds number is large enough that the velocity field takes the boundary-layer form. For
this class of problems, we find that there must be a correlation between the dimensionless
transport rate (i.e., the Nusselt number for heat transfer) and the independent dimensionless
parameters, Reynolds number Re and either Prandtl number Pr or Schmidt number Sc of
the form

Nu = cReaPrb or Nu = cReaScb.

The coefficient a = 0.5 for laminar flow conditions and Re � 1. On the other hand, the
coefficient b depends on the maginitude of the Prandtl (or Schmidt) number and also changes
depending on whether the boundary is a no-slip surface or a fluid interface. For example, for
a no-slip surface, b = 1/2 in the limit Pr (or Sc) → 0 but b = 1/3 for Pr (or Sc) → ∞. By
now, students can easily analyze and understand qualitatively the reasons for these changes,
as well as the effect of changes in the fluid mechanics or thermal boundary conditions.
The coefficient c is an order 1 number that depends on the geometry, but we show that
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A Preview

very general solutions for “arbitrary” body shapes can be obtained by means of similarity
transformations. Finally, we readdress the issue of the analogy between heat transfer and
single-component mass transfer by considering the effects of finite interfacial velocities
that must exist at a boundary that acts as a source or sink of material in the mass transfer
problem but not in the thermal problem.

Chapter 12: Hydrodynamic Stability
All of the preceding chapters seek solutions for various transport and fluid flow problems,
without addressing the stability of the solutions that are obtained. The ideas of linear stability
theory are very important both within the transport area and also in a variety of other problem
areas that students are likely to encounter. Too often, it is not addressed in transport courses,
even at the graduate level. The purpose of this chapter is to introduce students to the ideas
of linear stability theory and to the methods of analysis. The problems chosen are selected
because it is possible to make analytic progress and because they are of particular relevance
to chemical engineering applications. The one topic that is only lightly covered is the stability
of parallel shear flows. This is primarily because it is such a subtle and complicated subject
that one cannot do justice to it in this type of presentation (it is the subject of complete
books all by itself ).

We begin with capillary instability of a liquid thread. This is a problem that was discussed
qualitatively already in Chap. 2. It is a problem with a physically clear mechanism for
instability and thus provides a good framework for introducing the basic ideas of linear
stability theory. This problem is one of several examples in which the viscosity of the fluid
plays no role in determining stability, but only influences the rate of growth or decay of the
infinitesimal disturbances that are analyzed in a linear theory.

Next, we turn to the classic problem of Rayleigh–Taylor instability for the gravitationally
driven “overturning” of a pair of immiscible superposed fluids in which the upper fluid has
a higher density than the lower fluid. This is another example of a problem in which the
viscosity of the fluid is not an essential factor in its instability.

The third problem is known as the Saffman–Taylor instability of a fluid interface for
motion of a pair of fluids with different viscosities in a porous medium. It is this instability
that leads to the well-known and important phenomenon of viscous fingering. In this case,
we first discuss Darcy’s law for motion of a single-phase fluid in a porous medium, and then
we discuss the instability that occurs because of the displacement of one fluid by another
when there is a discontinuity in the viscosity and permeability across an interface. The
analysis presented ignores surface-tension effects and is thus valid strictly for “miscible
displacement.”

Next we turn to the stability of Couette flow for parallel rotating cylinders. This is
an important flow for various applications, and, though it is a shear flow, the stability is
dominated by the centrifugal forces that arise because of centripetal acceleration. This
problem is also an important contrast with the first two examples because it is a case in
which the flow can actually be stabilized by viscous effects. We first consider the classic
case of an inviscid fluid, which leads to the well-known criteria of Rayleigh for the stability
of an inviscid fluid. We then analyze the role of viscosity for the case of a narrow gap
in which analytic results can be obtained. We show that the flow is stabilized by viscous
diffusion effects up to a critical value of the Reynolds number for the problem (here known
as the Taylor number).

We then go on to consider three examples of instabilities that arise because of buoyancy
and Marangoni effects in a nonisothermal system. This is preceded by a brief discussion of
the Bousinesq approximation of the Navier–Stokes and thermal energy equations.

The first problem considered is the classic problem of Rayleigh–Benard convection –
namely the instability that is due to buoyancy forces in a quiescent fluid layer that is heated
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