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1

Dirichlet series: I

1.1 Generating functions and asymptotics

The general rationale of analytic number theory is to derive statistical informa-
tion about a sequence {an} from the analytic behaviour of an appropriate gen-
erating function, such as a power series

∑
anzn or a Dirichlet series

∑
ann−s .

The type of generating function employed depends on the problem being in-
vestigated. There are no rigid rules governing the kind of generating function
that is appropriate – the success of a method justifies its use – but we usually
deal with additive questions by means of power series or trigonometric sums,
and with multiplicative questions by Dirichlet series. For example, if

f (z) =
∞∑

n=1

znk

for |z| < 1, then the nth power series coefficient of f (z)s is the number rk,s(n)
of representations of n as a sum of s positive k th powers,

n = mk
1 + mk

2 + · · · + mk
s .

We can recover rk,s(n) from f (z)s by means of Cauchy’s coefficient formula:

rk,s(n) = 1

2π i

∮
f (z)s

zn+1
dz.

By choosing an appropriate contour, and estimating the integrand, we can de-
termine the asymptotic size of rk,s(n) as n → ∞, provided that s is sufficiently
large, say s > s0(k). This is the germ of the Hardy–Littlewood circle method,
but considerable effort is required to construct the required estimates.

To appreciate why power series are useful in dealing with additive prob-
lems, note that if A(z) = ∑

ak zk and B(z) = ∑
bm zm then the power series
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2 Dirichlet series: I

coefficients of C(z) = A(z)B(z) are given by the formula

cn =
∑

k+m=n

akbm . (1.1)

The terms are grouped according to the sum of the indices, because
zk zm = zk+m .

A Dirichlet series is a series of the form α(s) = ∑∞
n=1 ann−s where s is

a complex variable. If β(s) = ∑∞
m=1 bmm−s is a second Dirichlet series and

γ (s) = α(s)β(s), then (ignoring questions relating to the rearrangement of terms
of infinite series)

γ (s) =
∞∑

k=1

akk−s
∞∑

m=1

bmm−s =
∞∑

k=1

∞∑

m=1

akbm(km)−s =
∞∑

n=1

( ∑

km=n

akbm

)
n−s .

(1.2)

That is, we expect that γ (s) is a Dirichlet series, γ (s) = ∑∞
n=1 cnn−s , whose

coefficients are

cn =
∑

km=n

akbm . (1.3)

This corresponds to (1.1), but the terms are now grouped according to the
product of the indices, since k−sm−s = (km)−s .

Since we shall employ the complex variable s extensively, it is useful to have
names for its real and complex parts. In this regard we follow the rather peculiar
notation that has become traditional: s = σ + i t .

Among the Dirichlet series we shall consider is the Riemann zeta function,
which for σ > 1 is defined by the absolutely convergent series

ζ (s) =
∞∑

n=1

n−s . (1.4)

As a first application of (1.3), we note that if α(s) = β(s) = ζ (s) then the
manipulations in (1.3) are justified by absolute convergence, and hence we see
that

∞∑

n=1

d(n)n−s = ζ (s)2 (1.5)

for σ > 1. Here d(n) is the divisor function, d(n) = ∑
d|n 1.

From the rate of growth or analytic behaviour of generating functions we
glean information concerning the sequence of coefficients. In expressing our
findings we employ a special system of notation. For example, we say, ‘f (x) is
asymptotic to g(x)’ as x tends to some limiting value (say x → ∞), and write
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1.1 Generating functions and asymptotics 3

f (x) ∼ g(x) (x → ∞), if

lim
x→∞

f (x)

g(x)
= 1.

An instance of this arises in the formulation of the Prime Number Theorem
(PNT), which concerns the asymptotic size of the number π (x) of prime num-
bers not exceeding x ; π (x) = ∑

p≤x 1. Conjectured by Legendre in 1798, and
finally proved in 1896 independently by Hadamard and de la Vallée Poussin,
the Prime Number Theorem asserts that

π (x) ∼ x

log x
.

Alternatively, we could say that

π (x) = (1 + o(1))
x

log x
,

which is to say that π (x) is x/ log x plus an error term that is in the limit
negligible compared with x/ log x . More generally, we say, ‘f (x) is small oh
of g(x)’, and write f (x) = o(g(x)), if f (x)/g(x) → 0 as x tends to its limit.

The Prime Number Theorem can be put in a quantitative form,

π (x) = x

log x
+ O

(
x

(log x)2

)
. (1.6)

Here the last term denotes an implicitly defined function (the difference be-
tween the other members of the equation); the assertion is that this function has
absolute value not exceeding Cx(log x)−2. That is, the above is equivalent to
asserting that there is a constant C > 0 such that the inequality

∣∣∣π (x) − x

log x

∣
∣∣ ≤ Cx

(log x)2

holds for all x ≥ 2. In general, we say that f (x) is ‘big oh of g(x)’, and write
f (x) = O(g(x)) if there is a constant C > 0 such that | f (x)| ≤ Cg(x) for all
x in the appropriate domain. The function f may be complex-valued, but g
is necessarily non-negative. The constant C is called the implicit constant;
it is an absolute constant unless the contrary is indicated. For example, if C
is liable to depend on a parameter α, we might say, ‘For any fixed value of
α, f (x) = O(g(x))’. Alternatively, we might say, ‘ f (x) = O(g(x)) where the
implicit constant may depend on α’, or more briefly, f (x) = Oα(g(x)).

When there is no main term, instead of writing f (x) = O(g(x)) we save a
pair of parentheses by writing instead f (x) � g(x). This is read, ‘f (x) is less-
than-less-than g(x)’, and we write f (x) �α g(x) if the implicit constant may
depend on α. To provide an example of this notation, we recall that Chebyshev
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4 Dirichlet series: I
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Figure 1.1 Graph of π (x) (solid) and x/ log x (dotted) for 2 ≤ x ≤ 106.

proved that π (x) � x/ log x . This is of course weaker than the Prime Number
Theorem, but it was derived much earlier, in 1852. Chebyshev also showed
that π (x) � x/ log x . In general, we say that f (x) � g(x) if there is a positive
constant c such that f (x) ≥ cg(x) and g is non-negative. In this situation both
f and g take only positive values. If both f � g and f � g then we say that f
and g have the same order of magnitude, and write f � g. Thus Chebyshev’s
estimates can be expressed as a single relation,

π (x) � x

log x
.

The estimate (1.6) is best possible to the extent that the error term is not
o(x(log x)−2). We have also a special notation to express this:

π (x) − x

log x
= �

(
x

(log x)2

)
.

In general, if lim supx→∞ | f (x)|/g(x) > 0 then we say that f (x) is ‘Omega of
g(x)’, and write f (x) = �(g(x)). This is precisely the negation of the statement
‘ f (x) = o(g(x))’. When studying numerical values, as in Figure 1.1, we find
that the fit of x/ log x to π (x) is not very compelling. This is because the error
term in the approximation is only one logarithm smaller than the main term.
This error term is not oscillatory – rather there is a second main term of this
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1.1 Generating functions and asymptotics 5

size:

π (x) = x

log x
+ x

(log x)2
+ O

(
x

(log x)3

)
.

This is also best possible, but the main term can be made still more elaborate to
give a smaller error term. Gauss was the first to propose a better approximation to
π (x). Numerical studies led him to observe that the density of prime numbers in
the neighbourhood of x is approximately 1/ log x . This suggests that the number
of primes not exceeding x might be approximately equal to the logarithmic
integral,

li(x) =
∫ x

2

1

log u
du.

(Orally, ‘li’ rhymes with ‘pi’.) By repeated integration by parts we can show
that

li(x) = x
K−1∑

k=1

(k − 1)!

(log x)k
+ OK

(
x

(log x)K

)

for any positive integer K ; thus the secondary main terms of the approximation
to π (x) are contained in li(x).

In Chapter 6 we shall prove the Prime Number Theorem in the sharper
quantitative form

π (x) = li(x) + O

(
x

exp(c
√

log x)

)

for some suitable positive constant c. Note that exp(c
√

log x) tends to infinity
faster than any power of log x . The error term above seems to fall far from
what seems to be the truth. Numerical evidence, such as that in Table 1.1,
suggests that the error term in the Prime Number Theorem is closer to

√
x in

size. Gauss noted the good fit, and also that π (x) < li(x) for all x in the range of
his extensive computations. He proposed that this might continue indefinitely,
but the numerical evidence is misleading, for in 1914 Littlewood showed that

π (x) − li(x) = �±

(
x1/2 log log log x

log x

)
.

Here the subscript ± indicates that the error term achieves the stated or-
der of magnitude infinitely often, and in both signs. In particular, the dif-
ference π − li has infinitely many sign changes. More generally, we write
f (x) = �+(g(x)) if lim supx→∞ f (x)/g(x) > 0, we write f (x) = �−(g(x))
if lim infx→∞ f (x)/g(x) < 0, and we write f (x) = �±(g(x)) if both these re-
lations hold.
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6 Dirichlet series: I

Table 1.1 Values of π (x), li(x), x/ log x for x = 10k , 1 ≤ k ≤ 22.

x π (x) li(x) x/ log x

10 4 5.12 4.34
102 25 29.08 21.71
103 168 176.56 144.76
104 1229 1245.09 1085.74
105 9592 9628.76 8685.89
106 78498 78626.50 72382.41
107 664579 664917.36 620420.69
108 5761455 5762208.33 5428681.02
109 50847534 50849233.90 48254942.43
1010 455052511 455055613.54 434294481.90
1011 4118054813 4118066399.58 3948131653.67
1012 37607912018 37607950279.76 36191206825.27
1013 346065536839 346065458090.05 334072678387.12
1014 3204941750802 3204942065690.91 3102103442166.08
1015 29844570422669 29844571475286.54 28952965460216.79
1016 279238341033925 279238344248555.75 271434051189532.39
1017 2623557157654233 2623557165610820.07 2554673422960304.87
1018 24739954287740860 24739954309690413.98 24127471216847323.76
1019 234057667276344607 234057667376222382.22 228576043106974646.13
1020 2220819602560918840 2220819602783663483.55 2171472409516259138.26
1021 21127269486018731928 21127269486616126182.33 20680689614440563221.48
1022 201467286689315906290 201467286691248261498.15 197406582683296285295.97

In the exercises below we give several examples of the use of generating
functions, mostly power series, to establish relations between various counting
functions.

1.1.1 Exercises

1. Let r (n) be the number of ways that n cents of postage can be made, using
only 1 cent, 2 cent, and 3 cent stamps. That is, r (n) is the number of ordered
triples (x1, x2, x3) of non-negative integers such that x1 + 2x2 + 3x3 = n.
(a) Show that

∞∑

n=0

r (n)zn = 1

(1 − z)(1 − z2)(1 − z3)

for |z| < 1.
(b) Determine the partial fraction expansion of the rational function above.
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1.1 Generating functions and asymptotics 7

That is, find constants a, b, . . . , f so that the above is

a

(z − 1)3
+ b

(z − 1)2
+ c

z − 1
+ d

z + 1
+ e

z − ω
+ f

z − ω

where ω = e2π i/3 and ω = e−2π i/3 are the primitive cube roots of unity.
(c) Show that r (n) is the integer nearest (n + 3)2/12.
(d) Show that r (n) is the number of ways of writing n = y1 + y2 + y3 with

y1 ≥ y2 ≥ y3 ≥ 0.
2. Explain why

∞∏

k=0

(
1 + z2k

)
= 1 + z + z2 + · · ·

for |z| < 1.
3. (L. Mirsky & D. J. Newman) Suppose that 0 ≤ ak < mk for 1 ≤ k ≤ K , and

that m1 < m2 < · · · < mK . This is called a family of covering congruences
if every integer x satisfies at least one of the congruences x ≡ ak (mod mk).
A system of covering congruences is called exact if for every value of x
there is exactly one value of k such that x ≡ ak (mod mk). Show that if the
system is exact then

K∑

k=1

zak

1 − zmk
= 1

1 − z

for |z| < 1. Show that the left-hand side above is

∼ e2π iaK /mK

mK (1 − r )

when z = re2π i/mK and r → 1−. On the other hand, the right-hand side is
bounded for z in a neighbourhood of e2π i/mK if mK > 1. Deduce that a family
of covering congruences is not exact if mk > 1.

4. Let p(n; k) denote the number of partitions of n into at most k parts, that is, the
number of ordered k-tuples (x1, x2, . . . , xk) of non-negative integers such
that n = x1 + x2 + · · · + xk and x1 ≥ x2 ≥ · · · ≥ xk . Let p(n) = p(n; n) de-
note the total number of partitions of n. Also let po(n) be the number of
partitions of n into an odd number of parts, po(n) = ∑

2�k p(n; k). Finally,
let pd(n) denote the number of partitions of n into distinct parts, so that
x1 > x2 > · · · > xk . By convention, put p(0) = po(0) = pd(0) = 1.
(a) Show that there are precisely p(n; k) partitions of n into parts not

exceeding k.
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8 Dirichlet series: I

(b) Show that

∞∑

n=0

p(n; k)zn =
k∏

j=1

(1 − z j )−1

for |z| < 1.
(c) Show that

∞∑

n=0

p(n)zn =
∞∏

k=1

(1 − zk)−1

for |z| < 1.
(d) Show that

∞∑

n=0

pd(n)zn =
∞∏

k=1

(1 + zk)

for |z| < 1.
(e) Show that

∞∑

n=0

po(n)zn =
∞∏

k=1

(1 − z2k−1)−1

for |z| < 1.
(f) By using the result of Exercise 2, or otherwise, show that the last two

generating functions above are identically equal. Deduce that po(n) =
pd(n) for all n.

5. Let A(n) denote the number of ways of associating a product of n terms;
thus A(1) = A(2) = 1 and A(3) = 2. By convention, A(0) = 0.
(a) By considering the possible positionings of the outermost parentheses,

show that

A(n) =
n−1∑

k=1

A(k)A(n − k)

for all n ≥ 2.
(b) Let P(z) = ∑∞

n=0 A(n)zn . Show that

P(z)2 = P(z) − z.

Deduce that

P(z) = 1 − √
1 − 4z

2
=

∞∑

n=1

(1/2

n

)
22n−1(−1)n−1zn.

(c) Conclude that A(n) = ( 2n−2
n−1

)
/n for all n ≥ 1. These are called the Cata-

lan numbers.
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1.1 Generating functions and asymptotics 9

(d) What needs to be said concerning the convergence of the series used
above?

6. (a) Let nk denote the total number of monic polynomials of degree k in
Fp[x]. Show that nk = pk .

(b) Let P1, P2, . . . be the irreducible monic polynomials in Fp[x], listed in
some (arbitrary) order. Show that

∞∏

r=1

(1 + zdeg Pr + z2 deg Pr + z3 deg Pr + · · · ) = 1 + pz + p2z2

+p3z3 + · · ·
for |z| < 1/p.

(c) Let gk denote the number of irreducible monic polynomials of degree k
in Fp[x]. Show that

∞∏

k=1

(1 − zk)−gk = (1 − pz)−1 (|z| < 1/p).

(d) Take logarithmic derivatives to show that

∞∑

k=1

kgk
zk−1

1 − zk
= p

1 − pz
(|z| < 1/p).

(e) Show that

∞∑

k=1

kgk

∞∑

m=1

zmk =
∞∑

n=1

pnzn (|z| < 1/p).

(f) Deduce that
∑

k|n
kgk = pn

for all positive integers n.
(g) (Gauss) Use the Möbius inversion formula to show that

gn = 1

n

∑

k|n
µ(k)pn/k

for all positive integers n.
(h) Use (f) (not (g)) to show that

pn

n
− 2pn/2

n
≤ gn ≤ pn

n
.

(i) If a monic polynomial of degree n is chosen at random from Fp[x], about
how likely is it that it is irreducible? (Assume that p and/or n is large.)
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10 Dirichlet series: I

(j) Show that gn > 0 for all p and all n ≥ 1. (If P ∈ Fp[x] is irreducible and
has degree n, then the quotient ring Fp[x]/(P) is a field of pn elements.
Thus we have proved that there is such a field, for each prime p and
integer n ≥ 1. It may be further shown that the order of a finite field
is necessarily a prime power, and that any two finite fields of the same
order are isomorphic. Hence the field of order pn , whose existence we
have proved, is essentially unique.)

7. (E. Berlekamp) Let p be a prime number. We recall that polynomials in a
single variable (mod p) factor uniquely into irreducible polynomials. Thus
a monic polynomial f (x) can be expressed uniquely (mod p) in the form
g(x)h(x)2 where g(x) is square-free (mod p) and both g and h are monic. Let
sn denote the number of monic square-free polynomials (mod p) of degree
n. Show that

( ∞∑

k=0

sk zk

)( ∞∑

m=0

pm z2m

)
=

∞∑

n=0

pnzn

for |z| < 1/p. Deduce that

∞∑

k=0

sk zk = 1 − pz2

1 − pz
,

and hence that s0 = 1, s1 = p, and that sk = pk(1 − 1/p) for all k ≥ 2.
8. (cf Wagon 1987) (a) LetI = [a, b] be an interval. Show that

∫
I e2π i x dx = 0

if and only if the length b − a of I is an integer.
(b) LetR = [a, b] × [c, d] be a rectangle. Show that

∫∫
R e2π i(x+y) dx dy =

0 if and only if at least one of the edge lengths of R is an integer.
(c) Let R be a rectangle that is a union of finitely many rectangles Ri ; the

Ri are disjoint apart from their boundaries. Show that if all the Ri have
the property that at least one of their side lengths is an integer, then R
also has this property.

9. (L. Moser) If A is a set of non-negative integers, let rA(n) denote the number
of representations of n as a sum of two distinct members ofA. That is, rA(n) is
the number of ordered pairs (a1, a2) for which a1 ∈ A, a2 ∈ A, a1 + a2 = n,
and a1 �= a2. Let A(z) = ∑

a∈A za .
(a) Show that

∑
n rA(n)zn = A(z)2 − A(z2) for |z| < 1.

(b) Suppose that the non-negative integers are partitioned into two sets A
and B in such a way that rA(n) = rB(n) for all non-negative integers n.
Without loss of generality, 0 ∈ A. Show that 1 ∈ B, that 2 ∈ B, and
that 3 ∈ A.

(c) With A and B as above, show that A(z) + B(z) = 1/(1 − z) for |z| < 1.
(d) Show that A(z) − B(z) = (1 − z)

(
A(z2) − B(z2)

)
, and hence by
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