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Tools

This chapter presents the algorithmic and combinatorial framework in which
are developed the following chapters. It first specifies the concepts and notation
used to work on strings, languages, and automata. The rest is mainly devoted
to the introduction of chosen data structures for implementing automata, to the
presentation of combinatorial results, and to the design of elementary pattern
matching techniques. This organization is based on the observation that efficient
algorithms for text processing rely on one or the other of these aspects.

Section 1.2 provides some combinatorial properties of strings that occur in
numerous correctness proofs of algorithms or in their performance evaluation.
They are mainly periodicity results.

The formalism for the description of algorithms is presented in Section 1.3,
which is especially centered on the type of algorithm presented in the book, and
introduces some standard objects related to queues and automata processing.

Section 1.4 details several methods to implement automata in memory, these
techniques contribute, in particular, to results of Chapters 2, 5, and 6.

The first algorithms for locating strings in texts are presented in Section 1.5.
The sliding window mechanism, the notions of search automaton and of bit vec-
tors that are described in this section are also used and improved in Chapters 2,
3, and 8, in particular.

Section 1.6 is the algorithmic jewel of the chapter. It presents two fundamen-
tal algorithmic methods used for text processing. They are used to compute the
border table and the prefix table of a string that constitute two essential tables
for string processing. They synthesize a part of the combinatorial properties of
a string. Their utilization and adaptation is considered in Chapters 2 and 3, and
also punctually come back in other chapters.

Finally, we can note that intuition for combinatorial properties or algorithms
sometimes relies on figures whose style is introduced in this chapter and kept
thereafter.
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2 1 Tools

1.1 Strings and automata

In this section, we introduce notation on strings, languages, and automata.

Alphabet and strings

An alphabet is a finite nonempty set whose elements are called letters. A string
on an alphabet A is a finite sequence of elements of A. The zero letter sequence
is called the empty string and is denoted by ε. For the sake of simplification,
delimiters, and separators usually employed in sequence notation are removed
and a string is written as the simple juxtaposition of the letters that compose it.
Thus, ε, a, b, and baba are strings on any alphabet that contains the two letters
a and b. The set of all the strings on the alphabet A is denoted by A∗, and the
set of all the strings on the alphabet A except the empty string ε is denoted
by A+.

The length of a string x is defined as the length of the sequence as-
sociated with the string x and is denoted by |x|. We denote by x[i], for
i = 0, 1, . . . , |x| − 1, the letter at index i of x with the convention that in-
dices begin with 0. When x �= ε, we say more specifically that each index
i = 0, 1, . . . , |x| − 1 is a position on x. It follows that the ith letter of x is the
letter at position i − 1 on x and that:

x = x[0]x[1] . . . x[|x| − 1].

Thus an elementary definition of the identity between any two strings x and y

is:

x = y

if and only if

|x| = |y| and x[i] = y[i] for i = 0, 1, . . . , |x| − 1.

The set of letters that occur in the string x is denoted by alph(x). For instance,
if x = abaaab, we have |x| = 6 and alph(x) = {a, b}.

The product – we also say the concatenation – of two strings x and y is the
string composed of the letters of x followed by the letters of y. It is denoted by
xy or also x · y to show the decomposition of the resulting string. The neutral
element for the product is ε. For every string x and every natural number n, we
define the nth power of the string x, denoted by xn, by x0 = ε and xk = xk−1x

for k = 1, 2, . . . , n. We denote respectively by zy−1 and x−1z the strings x and
y when z = xy. The reverse – or mirror image – of the string x is the string
x∼ defined by:

x∼ = x[|x| − 1]x[|x| − 2] . . . x[0].
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1.1 Strings and automata 3

b a b a a b a b a

Figure 1.1. An occurrence of string aba in string babaababa at (left) position 1.

A string x is a factor of a string y if there exist two strings u and v such that
y = uxv. When u = ε, x is a prefix of y; and when v = ε, x is a suffix of y. The
string x is a subsequence1 of y if there exist |x| + 1 strings w0, w1, . . . , w|x|
such that y = w0x[0]w1x[1] . . . x[|x| − 1]w|x|; in a less formal way, x is a
string obtained from y by deleting |y| − |x| letters. A factor or a subsequence x

of a string y is proper if x �= y. We denote respectively by x �fact y, x ≺fact y,
x �pref y, x ≺pref y, x �suff y, x ≺suff y, x �sseq y, and x ≺sseq y when x is
a factor, a proper factor, a prefix, a proper prefix, a suffix, a proper suffix, a
subsequence, and a proper subsequence of y. One can verify that �fact, �pref ,
�suff , and �sseq are orderings on A∗.

The lexicographic ordering, denoted by ≤, is an ordering on strings induced
by an ordering on the letters and denoted by the same symbol. It is defined as
follows. For x, y ∈ A∗, x ≤ y if and only if, either x �pref y, or x and y can
be decomposed as x = uav and y = ubw with u, v,w ∈ A∗, a, b ∈ A, and
a < b. Thus, ababb < abba < abbaab assuming a < b.

Let x be a nonempty string and y be a string, we say that there is an
occurrence of x in y, or, more simply, that x occurs in y, when x is a factor
of y. Every occurrence, or every appearance, of x can be characterized by a
position on y. Thus we say that an occurrence of x starts at the left position i on
y when y[i . . i + |x| − 1] = x (see Figure 1.1). It is sometimes more suitable
to consider the right position i + |x| − 1 at which this occurrence ends. For
instance, the left and right positions where the string x = aba occurs in the
string y = babaababa are:

i 0 1 2 3 4 5 6 7 8

y[i] b a b a a b a b a

left positions 1 4 6
right positions 3 6 8

The position of the first occurrence pos(x) of x in y is the minimal (left)
position at which starts the occurrence of x in yA∗. With the notation on the
languages recalled thereafter, we have:

pos(x) = min{|u| : uxA∗ ∩ yA∗ �= ∅}.

1 We avoid the common use of “subword” because it has two definitions in literature: one of
them is factor and the other one is subsequence.
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4 1 Tools

The square bracket notation for the letters of strings is extended to factors.
We define the factor x[i . . j ] of the string x by:

x[i . . j ] = x[i]x[i + 1] . . . x[j ]

for all integers i and j satisfying 0 ≤ i ≤ |x|, −1 ≤ j ≤ |x| − 1, and i ≤ j + 1.
When i = j + 1, the string x[i . . j ] is the empty string.

Languages

Any subset of A∗ is a language on the alphabet A. The product defined on
strings is extended to languages as follows:

XY = X · Y = {xy : (x, y) ∈ X × Y }
for every languages X and Y . We extend as well the notion of power as follows
X0 = {ε} and Xk = Xk−1X for k ≥ 1. The star of X is the language:

X∗ =
⋃

n≥0

Xn.

We denote by X+ the language defined by

X+ =
⋃

n≥1

Xn.

Note that these two latter notation are compatible with the notation A∗ and
A+. In order not to overload the notation, a language that is reduced to a single
string can be named by the string itself if it does not lead to any confusion. For
instance, the expression A∗abaaab denotes the language of the strings in A∗
having the string abaaab as suffix, assuming {a, b} ⊆ A.

The notion of length is extended to languages as follows:

|X| =
∑

x∈X

|x|.

In the same way, we define alph(X) by

alph(X) =
⋃

x∈X

alph(x)

and X∼ by

X∼ = {x∼ : x ∈ X}.
The sets of factors, prefixes, suffixes, and subsequences of the strings of

a language X are particular languages that are often considered in the rest
of the book; they are respectively denoted by Fact(X), Pref(X), Suff(X), and
Subs(X).
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1.1 Strings and automata 5

The right context of a string y relatively to a language X is the language:

y−1X = {y−1x : x ∈ X}.
The equivalence relation defined by the identity of right contexts is denoted
by ≡X, or simply2 ≡. Thus

y ≡ z if and only if y−1X = z−1X

for y, z ∈ A∗. For instance, when A = {a, b} and X = A∗{aba}, the relation ≡
admits four equivalence classes: {ε, b} ∪ A∗{bb}, {a} ∪ A∗{aa, bba}, A∗{ab},
and A∗{aba}. For every language X, the relation ≡ is an equivalence rela-
tion that is compatible with the concatenation. It is called the right syntactic
congruence associated with X.

Regular expressions and languages

The regular expressions on an alphabet A and the languages they describe, the
regular languages, are recursively defined as follows:

� 0 and 1 are regular expressions that respectively describe ∅ (the empty set)
and {ε},

� for every letter a ∈ A, a is a regular expression that describes the singleton
{a},

� if x and y are regular expressions respectively describing the regular
languages X and Y , then (x)+( y), (x).( y), and (x)* are regular
expressions that respectively describe the regular languages X ∪ Y , X · Y ,
and X∗.

The priority order of operations on the regular expressions is *, ., then +.
Possible writing simplifications allow one to omit the symbol . and some
parentheses pairs. The language described by a regular expression x is denoted
by Lang(x).

Automata

An automaton M on the alphabet A is composed of a finite set Q of states, of an
initial state 3 q0, of a set T ⊆ Q of terminal states, and of a set F ⊆ Q × A × Q

2 As in all the rest of the book, the notation is indexed by the object to which they refer only
when it could be ambiguous.

3 The standard definition of automata considers a set of initial states rather than a single initial
state as we do in the entire book. We leave the reader to convince himself that it is possible to
build a correspondence between any automaton defined in the standard way and an automaton
with a single initial state that recognizes the same language.
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6 1 Tools

of arcs – or transitions. We denote the automaton M by the quadruplet:

(Q, q0, T , F ).

We say of an arc (p, a, q) that it leaves the state p and that it enters the state
q; state p is the source of the arc, letter a its label, and state q its target. The
number of arcs outgoing a given state is called the outgoing degree of the state.
The incoming degree of a state is defined in a dual way. By analogy with graphs,
the state q is a successor by the letter a of the state p when (p, a, q) ∈ F ; in
the same case, we say that the pair (a, q) is a labeled successor of the state p.

A path of length n in the automaton M = (Q, q0, T , F ) is a sequence of n

consecutive arcs

〈(p0, a0, p
′
0), (p1, a1, p

′
1), . . . , (pn−1, an−1, p

′
n−1)〉,

that satisfies

p′
k = pk+1

for k = 0, 1, . . . , n − 2. The label of the path is the string a0a1 . . . an−1, its
origin the state p0, its end the state p′

n−1. By convention, there exists for each
state p a path of null length of origin and of end p; the label of such a path is
ε, the empty string. A path in the automaton M is successful if its origin is the
initial state q0 and if its end is in T . A string is recognized – or accepted – by
the automaton if it is the label of a successful path. The language composed of
the strings recognized by the automaton M is denoted by Lang(M).

Often, more than its formal notation, a diagram illustrates how an automaton
works. We represent the states by circles and the arcs by directed arrows from
source to target, labeled by the corresponding letter. When several arcs have the
same source and the same target, we merge the arcs and the label of the resulting
arc becomes an enumeration of the letters. The initial state is distinguished by
a short incoming arrow and the terminal states are double circled. An example
is shown in Figure 1.2.

A state p of an automaton M = (Q, q0, T , F ) is accessible if there exists
a path in M starting at q0 and ending in p. A state p is co-accessible if there
exists a path in M starting at p and ending in T .

An automaton M = (Q, q0, T , F ) is deterministic if for every pair (p, a) ∈
Q × A there exists at most one state q ∈ Q such that (p, a, q) ∈ F . In such a
case, it is natural to consider the transition function

δ:Q × A → Q

of the automaton defined for every arc (p, a, q) ∈ F by

δ(p, a) = q
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1.1 Strings and automata 7
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Figure 1.2. Representation of an automaton on the alphabet A = {a, b, c}. The states of the
automaton are numbered from 0 to 4, its initial state is 0, and its terminal states are 2 and 4.
The automaton possesses 3 × 5 = 15 arcs. The language that it recognizes is described by the
regular expression (a+b+c)*(aa+aba), that is, the set of strings on the three letter alphabet
a, b, and c ending by aa or aba.

and not defined elsewhere. The function δ is easily extended to strings. It
is enough to consider its extension δ̄:Q × A∗ → Q recursively defined by
δ̄(p, ε) = p and δ̄(p,wa) = δ(δ̄(p,w), a) for p ∈ Q, w ∈ A∗, and a ∈ A. It
follows that the string w is recognized by the automaton M if and only if
δ̄(q0, w) ∈ T . Generally, the function δ and its extension δ̄ are denoted in the
same way.

The automaton M = (Q, q0, T , F ) is complete when for every pair (p, a)
∈ Q × A there exists at least one state q ∈ Q such that (p, a, q) ∈ F .

Proposition 1.1
For every automaton, there exists a deterministic and complete automaton that
recognizes the same language.

To complete an automaton is not difficult: it is enough to add to the automaton
a sink state, then to make it the target of all undefined transitions. It is a bit more
difficult to determinize an automaton, that is, to transform an automaton M =
(Q, q0, T , F ) into a deterministic automaton recognizing the same language.
One can use the so-called method of construction by subsets: let M ′ be the
automaton whose states are the subsets of Q, the initial state is the singleton
{q0}, the terminal states are the subsets of Q that intersect T , and the arcs are the
triplets (U, a, V ) where V is the set of successors by the letter a of the states p

belonging to U ; then M ′ is a deterministic automaton that recognizes the same
language as M . In practical applications, we do not construct the automaton
M ′ entirely, but only its accessible part from the initial state {q0}.
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8 1 Tools

A language X is recognizable if there exists an automaton M such that
X = Lang(M). The statement of a fundamental theorem of automata theory
that establishes the link between recognizable languages and regular languages
on a given alphabet follows.

Theorem 1.2 (Kleene’s Theorem)
A language is recognizable if and only if it is regular.

If X is a recognizable language, the minimal automaton of X, denoted
by M(X), is determined by the right syntactic congruence associated with
X. It is the automaton whose set of states is {w−1X : w ∈ A∗}, the initial
state is X, the set of terminal states is {w−1X : w ∈ X}, and the set of arcs is
{(w−1X, a, (wa)−1X) : (w, a) ∈ A∗ × A}.

Proposition 1.3
The minimal automaton M(X) of a language X is the automaton having the
smallest number of states among the deterministic and complete automata that
recognize the language X. The automaton M(X) is the homomorphic image
of every automaton recognizing X.

We often say of an automaton that it is minimal though it is not complete.
Actually, this automaton is indeed minimal if one takes care to add a sink
state.

Each state of an automaton, or even sometimes each arc, can be associated
with an output. It is a value or a set of values associated with the state or the
arc.

1.2 Some combinatorics

We consider the notion of periodicity on strings for which we give the basic
properties. We begin with presenting two families of strings that have interesting
combinatorial properties with regard to questions of periodicities and repeats
examined in several chapters.

Some specific strings

Fibonacci numbers are defined by the recurrence:

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2 for n ≥ 2.
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1.2 Some combinatorics 9

These famous numbers satisfy properties all more remarkable than the others.
Among those, we just give two:

� for every natural number n ≥ 2, gcd(Fn, Fn−1) = 1,
� for every natural number n, Fn is the nearest integer of �n/

√
5, where

� = 1
2 (1 + √

5) = 1,61803 . . . is the golden ratio.

Fibonacci strings are defined on the alphabet A = {a, b} by the following
recurrence:

f0 = ε,

f1 = b,

f2 = a,

fn = fn−1fn−2 for n ≥ 3.

Note that the sequence of lengths of the strings is exactly the sequence of
Fibonacci numbers, that is, Fn = |fn|. Here are the first ten Fibonacci numbers
and strings:

n Fn fn

0 0 ε

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

7 13 abaababaabaab

8 21 abaababaabaababaababa

9 34 abaababaabaababaababaabaababaabaab

The interest in Fibonacci strings is that they satisfy many combinatorial
properties and they contain a large number of repeats.

The de Bruijn strings considered here are defined on the alphabet A = {a, b}
and are parameterized by a non-null natural number. A nonempty string x ∈ A+

is a de Bruijn string of order k if each string on A of length k occurs once
and only once in x. A first example: ab and ba are the only two de Bruijn
strings of order 1. A second example: the string aaababbbaa is a de Bruijn
string of order 3 since its factors of length 3 are the eight strings of A3, that is,
aaa, aab, aba, abb, baa, bab, bba, and bbb, and each of them occurs exactly
once in it.
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10 1 Tools

aa ab

ba bb
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b

a
ba

b
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Figure 1.3. The order 3 de Bruijn automaton on the alphabet {a, b}. The initial state of the
automaton is not specified.

The existence of a de Bruijn string of order k ≥ 2 can be verified with the
help of the automaton defined by

� states are the strings of the language Ak−1,
� arcs are of the form (av, b, vb) with a, b ∈ A and v ∈ Ak−2,

the initial state and the terminal states are not given (an illustration is shown in
Figure 1.3). We note that exactly two arcs exit each of the states, one labeled by
a, the other by b; and that exactly two arcs enter each of the states, both labeled
by the same letter. The graph associated with the automaton thus satisfies the
Euler condition: the outgoing degree and the incoming degree of each state are
identical. It follows that there exists an Eulerian circuit in the graph. Now, let

〈(u0, a0, u1), (u1, a1, u2), . . . , (un−1, an−1, u0)〉
be the corresponding path. The string u0a0a1 . . . an−1 is a de Bruijn string of
order k, since each arc of the path is identified with a factor of length k. It
follows in the same way that a de Bruijn string of order k has length 2k + k − 1
(thus n = 2k with the previous notation). It can also be verified that the number
of de Bruijn strings of order k is exponential in k.

The de Bruijn strings are often used as examples of limit cases in the sense
that they contain all the factors of a given length.

Periodicity and borders

Let x be a nonempty string. An integer p such that 0 < p ≤ |x| is called a
period of x if:

x[i] = x[i + p]

for i = 0, 1, . . . , |x| − p − 1. Note that the length of a nonempty string is a
period of this string, such that every nonempty string has at least one period.
We define thus without any ambiguity the period of a nonempty string x as the
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