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1

Introduction

1.1 Preliminaries

A partial differential equation (PDE) describes a relation between an unknown
function and its partial derivatives. PDEs appear frequently in all areas of physics
and engineering. Moreover, in recent years we have seen a dramatic increase in the
use of PDEs in areas such as biology, chemistry, computer sciences (particularly in
relation to image processing and graphics) and in economics (finance). In fact, in
each area where there is an interaction between a number of independent variables,
we attempt to define functions in these variables and to model a variety of processes
by constructing equations for these functions. When the value of the unknown
function(s) at a certain point depends only on what happens in the vicinity of this
point, we shall, in general, obtain a PDE. The general form of a PDE for a function
u(x1, x2, . . . , xn) is

F(x1, x2, . . . , xn, u, ux1, ux2, . . . , ux11, . . .) = 0, (1.1)

where x1, x2, . . . , xn are the independent variables, u is the unknown function,
and uxi denotes the partial derivative ∂u/∂xi . The equation is, in general, sup-
plemented by additional conditions such as initial conditions (as we have of-
ten seen in the theory of ordinary differential equations (ODEs)) or boundary
conditions.

The analysis of PDEs has many facets. The classical approach that dominated
the nineteenth century was to develop methods for finding explicit solutions. Be-
cause of the immense importance of PDEs in the different branches of physics,
every mathematical development that enabled a solution of a new class of PDEs
was accompanied by significant progress in physics. Thus, the method of charac-
teristics invented by Hamilton led to major advances in optics and in analytical
mechanics. The Fourier method enabled the solution of heat transfer and wave
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2 Introduction

propagation, and Green’s method was instrumental in the development of the theory
of electromagnetism. The most dramatic progress in PDEs has been achieved in
the last 50 years with the introduction of numerical methods that allow the use of
computers to solve PDEs of virtually every kind, in general geometries and under
arbitrary external conditions (at least in theory; in practice there are still a large
number of hurdles to be overcome).

The technical advances were followed by theoretical progress aimed at under-
standing the solution’s structure. The goal is to discover some of the solution’s
properties before actually computing it, and sometimes even without a complete
solution. The theoretical analysis of PDEs is not merely of academic interest, but
rather has many applications. It should be stressed that there exist very complex
equations that cannot be solved even with the aid of supercomputers. All we can
do in these cases is to attempt to obtain qualitative information on the solution. In
addition, a deep important question relates to the formulation of the equation and
its associated side conditions. In general, the equation originates from a model of
a physical or engineering problem. It is not automatically obvious that the model
is indeed consistent in the sense that it leads to a solvable PDE. Furthermore, it
is desired in most cases that the solution will be unique, and that it will be stable
under small perturbations of the data. A theoretical understanding of the equation
enables us to check whether these conditions are satisfied. As we shall see in what
follows, there are many ways to solve PDEs, each way applicable to a certain class
of equations. Therefore it is important to have a thorough analysis of the equation
before (or during) solving it.

The fundamental theoretical question is whether the problem consisting of the
equation and its associated side conditions is well posed. The French mathematician
Jacques Hadamard (1865–1963) coined the notion of well-posedness. According
to his definition, a problem is called well-posed if it satisfies all of the following
criteria

1. Existence The problem has a solution.
2. Uniqueness There is no more than one solution.
3. Stability A small change in the equation or in the side conditions gives rise to a small

change in the solution.

If one or more of the conditions above does not hold, we say that the problem is
ill-posed. One can fairly say that the fundamental problems of mathematical physics
are all well-posed. However, in certain engineering applications we might tackle
problems that are ill-posed. In practice, such problems are unsolvable. Therefore,
when we face an ill-posed problem, the first step should be to modify it appropriately
in order to render it well-posed.
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1.2 Classification

We pointed out in the previous section that PDEs are often classified into different
types. In fact, there exist several such classifications. Some of them will be de-
scribed here. Other important classifications will be described in Chapter 3 and in
Chapter 9.

� The order of an equation
The first classification is according to the order of the equation. The order is defined to be
the order of the highest derivative in the equation. If the highest derivative is of order k, then
the equation is said to be of order k. Thus, for example, the equation utt − uxx = f (x, t)
is called a second-order equation, while ut + uxxxx = 0 is called a fourth-order equation.

� Linear equations
Another classification is into two groups: linear versus nonlinear equations. An equation is
called linear if in (1.1), F is a linear function of the unknown function u and its derivatives.
Thus, for example, the equation x7ux + exyuy + sin(x2 + y2)u = x3 is a linear equation,
while u2

x + u2
y = 1 is a nonlinear equation. The nonlinear equations are often further

classified into subclasses according to the type of the nonlinearity. Generally speaking,
the nonlinearity is more pronounced when it appears in a higher derivative. For example,
the following two equations are both nonlinear:

uxx + uyy = u3, (1.2)

uxx + uyy = |∇u|2u. (1.3)

Here |∇u| denotes the norm of the gradient of u. While (1.3) is nonlinear, it is still linear
as a function of the highest-order derivative. Such a nonlinearity is called quasilinear. On
the other hand in (1.2) the nonlinearity is only in the unknown function. Such equations
are often called semilinear.

� Scalar equations versus systems of equations
A single PDE with just one unknown function is called a scalar equation. In contrast, a
set of m equations with l unknown functions is called a system of m equations.

1.3 Differential operators and the superposition principle

A function has to be k times differentiable in order to be a solution of an equation
of order k. For this purpose we define the set Ck(D) to be the set of all functions
that are k times continuously differentiable in D. In particular, we denote the set
of continuous functions in D by C0(D), or C(D). A function in the set Ck that
satisfies a PDE of order k, will be called a classical (or strong) solution of the
PDE. It should be stressed that we sometimes also have to deal with solutions that
are not classical. Such solutions are called weak solutions. The possibility of weak
solutions and their physical meaning will be discussed on several occasions later,
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see for example Sections 2.7 and 10.2. Note also that, in general, we are required
to solve a problem that consists of a PDE and associated conditions. In order for
a strong solution of the PDE to also be a strong solution of the full problem, it is
required to satisfy the additional conditions in a smooth way.

Mappings between different function sets are called operators. The operation
of an operator L on a function u will be denoted by L[u]. In particular, we shall
deal in this book with operators defined by partial derivatives of functions. Such
operators, which are in fact mappings between different Ck classes, are called
differential operators.

An operator that satisfies a relation of the form

L[a1u1 + a2u2] = a1L[u1] + a2L[u2],

where a1 and a2 are arbitrary constants, and u1 and u2 are arbitrary functions is
called a linear operator. A linear differential equation naturally defines a linear
operator: the equation can be expressed as L[u] = f , where L is a linear operator
and f is a given function.

A linear differential equation of the form L[u] = 0, where L is a linear operator,
is called a homogeneous equation. For example, define the operator L = ∂2/∂x2 −
∂2/∂y2. The equation

L[u] = uxx − uyy = 0

is a homogeneous equation, while the equation

L[u] = uxx − uyy = x2

is an example of a nonhomogeneous equation.
Linear operators play a central role in mathematics in general, and in PDE

theory in particular. This results from the important property (which follows at
once from the definition) that if for 1 ≤ i ≤ n, the function ui satisfies the linear
differential equation L[ui ] = fi , then the linear combination v := ∑n

i=1 αi ui sat-
isfies the equation L[v] = ∑n

i=1 αi fi . In particular, if each of the functions
u1, u2, . . . , un satisfies the homogeneous equation L[u] = 0, then every linear com-
bination of them satisfies that equation too. This property is called the superposition
principle. It allows the construction of complex solutions through combinations of
simple solutions. In addition, we shall use the superposition principle to prove
uniqueness of solutions to linear PDEs.

1.4 Differential equations as mathematical models

PDEs are woven throughout science and technology. We shall briefly review a
number of canonical equations in different areas of application. The fundamental
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laws of physics provide a mathematical description of nature’s phenomena on a
variety of scales of time and space. Thus, for example, very large scale phenomena
(astronomical scales) are controlled by the laws of gravity. The theory of electro-
magnetism controls the scales involved in many daily activities, while quantum
mechanics is used to describe phenomena on the atomic scale. It turns out, how-
ever, that many important problems involve interaction between a large number
of objects, and thus it is difficult to use the basic laws of physics to describe
them. For example, we do not fall to the floor when we sit on a chair. Why? The
fundamental reason lies in the electric forces between the atoms constituting the
chair. These forces endow the chair with high rigidity. It is clear, though, that it
is not feasible to solve the equations of electromagnetism (Maxwell’s equations)
to describe the interaction between such a vast number of objects. As another
example, consider the flow of a gas. Each molecule obeys Newton’s laws, but
we cannot in practice solve for the evolution of an Avogadro number of individ-
ual molecules. Therefore, it is necessary in many applications to develop simpler
models.

The basic approach towards the derivation of these models is to define new quan-
tities (temperature, pressure, tension,. . .) that describe average macroscopic values
of the fundamental microscopic quantities, to assume several fundamental princi-
ples, such as conservation of mass, conservation of momentum, conservation of
energy, etc., and to apply the new principles to the macroscopic quantities. We shall
often need some additional ad-hoc assumptions to connect different macroscopic
entities. In the optimal case we would like to start from the fundamental laws and
then average them to achieve simpler models. However, it is often very hard to do
so, and, instead, we shall sometimes use experimental observations to supplement
the basic principles. We shall use x, y, z to denote spatial variables, and t to denote
the time variable.

1.4.1 The heat equation

A common way to encourage scientific progress is to confer prizes and awards.
Thus, the French Academy used to set up competitions for its prestigious prizes
by presenting specific problems in mathematics and physics. In 1811 the Academy
chose the problem of heat transfer for its annual prize. The prize was awarded to the
French mathematician Jean Baptiste Joseph Fourier (1768–1830) for two important
contributions. (It is interesting to mention that he was not an active scientist at that
time, but rather the governor of a region in the French Alps – actually a politician!).
He developed, as we shall soon see, an appropriate differential equation, and, in
addition developed, as we shall see in Chapter 5, a novel method for solving this
equation.
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The basic idea that guided Fourier was conservation of energy. For simplicity
we assume that the material density and the heat capacity are constant in space
and time, and we scale them to be 1. We can therefore identify heat energy with
temperature. Let D be a fixed spatial domain, and denote its boundary by ∂ D.
Under these conditions we shall write down the change in the energy stored in D
between time t and time t + �t :∫

D
[u(x, y, z, t + �t) − u(x, y, z, t)] dV

=
∫ t+�t

t

∫
D

q(x, y, z, t, u)dV dt −
∫ t+�t

t

∫
∂ D

�B(x, y, z, t) · n̂dSdt, (1.4)

where u is the temperature, q is the rate of heat production in D, �B is the heat
flux through the boundary, dV and dS are space and surface integration elements,
respectively, and n̂ is a unit vector pointing in the direction of the outward nor-
mal to ∂ D. Notice that the heat production can be negative (a refrigerator, an air
conditioner), as can the heat flux.

In general the heat production is determined by external sources that are inde-
pendent of the temperature. In some cases (such as an air conditioner controlled
by a thermostat) it depends on the temperature itself but not on its derivatives.
Hence we assume q = q(x, y, z, t, u). To determine the functional form of the heat
flux, Fourier used the experimental observation that ‘heat flows from hotter places
to colder places’. Recall from calculus that the direction of maximal growth of a
function is given by its gradient. Therefore, Fourier postulated

�B = −k(x, y, z) �∇u. (1.5)

The formula (1.5) is called Fourier’s law of heat conduction. The (positive!) function
k is called the heat conduction (or Fourier) coefficient. The value(s) of k depend
on the medium in which the heat diffuses. In a homogeneous domain k is expected
to be constant. The assumptions on the functional dependence of q and �B on u are
called constitutive laws.

We substitute our formula for q and �B into (1.4), approximate the t integrals
using the mean value theorem, divide both sides of the equation by �t , and take
the limit �t → 0. We obtain∫

D
ut dV =

∫
D

q(x, y, z, t, u)dV +
∫

∂ D
k(x, y, z) �∇u · n̂dS. (1.6)

Observe that the integration in the second term on the right hand side is over a
different set than in the other terms. Thus we shall use Gauss’ theorem to convert
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the surface integral into a volume integral:∫
D

[ut − q − �∇ · (k �∇u)]dV = 0, (1.7)

where �∇· denotes the divergence operator. The following simple result will be used
several times in the book.

Lemma 1.1 Let h(x, y, z) be a continuous function satisfying
∫
�

h(x, y, z)dV = 0
for every domain �. Then h ≡ 0.

Proof Let us assume to the contrary that there exists a point P = (x0, y0, z0) where
h(P) �= 0. Assume without loss of generality that h(P) > 0. Since h is continuous,
there exists a domain (maybe very small) D0, containing P and ε > 0, such that h >

ε > 0 at each point in D0. Therefore
∫

D0
hdV > εVol(D0) > 0 which contradicts

the lemma’s assumption. �

Returning to the energy integral balance (1.7), we notice that it holds for any
domain D. Assuming further that all the functions in the integrand are continuous,
we obtain the PDE

ut = q + �∇ · (k �∇u). (1.8)

In the special (but common) case where the diffusion coefficient is constant, and
there are no heat sources in D itself, we obtain the classical heat equation

ut = k�u, (1.9)

where we use �u to denote the important operator uxx + uyy + uzz . Observe that
we have assumed that the solution of the heat equation, and even some of its
derivatives are continuous functions, although we have not solved the equation yet.
Therefore, in principle we have to reexamine our assumptions a posteriori. We shall
see examples later in the book in which solutions of a PDE (or their derivatives) are
not continuous. We shall then consider ways to provide a meaning for the seemingly
absurd process of substituting a discontinuous function into a differential equation.
One of the fundamental ways of doing so is to observe that the integral balance
equation (1.6) provides a more fundamental model than the PDE (1.8).

1.4.2 Hydrodynamics and acoustics

Hydrodynamics is the physical theory of fluid motion. Since almost any conceivable
volume of fluid (whether it is a cup of coffee or the Pacific Ocean) contains a
huge number of molecules, it is not feasible to describe the fluid using the law
of electromagnetism or quantum mechanics. Hence, since the eighteenth century
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scientists have developed models and equations that are appropriate to macroscopic
entities such as temperature, pressure, effective velocity, etc. As explained above,
these equations are based on conservation laws.

The simplest description of a fluid consists of three functions describing its state
at any point in space-time:

� the density (mass per unit of volume) ρ(x, y, z, t);
� the velocity �u(x, y, z, t);
� the pressure p(x, y, z, t).

To be precise, we must also include the temperature field in the fluid. But to
simplify matters, it will be assumed here that the temperature is a known constant.
We start with conservation of mass. Consider a fluid element occupying an arbitrary
spatial domain D. We assume that matter neither is created nor disappears in D.
Thus the total mass in D does not change:

∂

∂t

∫
D

ρdV = 0. (1.10)

The motion of the fluid boundary is given by the component of the velocity �u in
the direction orthogonal to the boundary ∂ D. Thus we can write∫

D

∂

∂t
ρdV +

∫
∂ D

ρ �u · n̂dS = 0, (1.11)

where we denoted the unit external normal to ∂ D by n̂. Using Gauss’ theorem we
obtain ∫

D
[ρt + �∇ · (ρ �u)]dV = 0. (1.12)

Since D is an arbitrary domain we can use again Lemma 1.1 to obtain the mass
transport equation

ρt + �∇ · (ρ�u) = 0. (1.13)

Next we require the fluid to satisfy the momentum conservation law. The forces
acting on the fluid in D are gravity, acting on each point in the fluid, and the pressure
applied at the boundary of D by the rest of the fluid outside D. We denote the
density per unit mass of the gravitational force by �g. For simplicity we neglect the
friction forces between adjacent fluid molecules. Newton’s law of motion implies
an equality between the change in the fluid momentum and the total forces acting
on the fluid. Thus

∂

∂t

∫
D

ρ �udV = −
∫

∂ D
pn̂ds +

∫
D

ρ�gdV . (1.14)
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Let us interchange again the t differentiation with the spatial integration, and use
(1.13) to obtain the integral balance∫

D
[ρ �ut + ρ(�u · �∇)�u]dV =

∫
D

(−�∇ p + ρ�g)dV . (1.15)

From this balance we deduce the PDE

�ut + (�u · �∇)�u = − 1

ρ
�∇ p + �g. (1.16)

So far we have developed two PDEs for three unknown functions (ρ, �u, p). We
therefore need a third equation to complete the system. Notice that conservation of
energy has already been accounted for by assuming that the temperature is fixed.
In fact, the additional equation does not follow from a conservation law, rather one
imposes a constitutive relation (like Fourier’s law from the previous subsection).
Specifically, we postulate a relation of the form

p = f (ρ), (1.17)

where the function f is determined by the specific fluid (or gas). The full system
comprising (1.13), (1.16) and (1.17) is called the Euler fluid flow equations. These
equations were derived in 1755 by the Swiss mathematician Leonhard Euler (1707–
1783).

If one takes into account the friction between the fluid molecules, the equations
acquire an additional term. This friction is called viscosity. The special case of
viscous fluids where the density is essentially constant is of particular importance.
It characterizes, for example, most phenomena involving the flow of water. This
case was analyzed first in 1822 by the French engineer Claude Navier (1785–1836),
and then studied further by the British mathematician George Gabriel Stokes (1819–
1903). They derived the following set of equations:

ρ(�ut + (�u · �∇)�u) = µ��u − �∇ p, (1.18)
�∇ · �u = 0. (1.19)

The parameter µ is called the fluid’s viscosity. Notice that (1.18)–(1.19) form a
quasilinear system of equations. The Navier–Stokes system lies at the foundation of
hydrodynamics. Enormous computational efforts are invested in solving them under
a variety of conditions and in a plurality of applications, including, for example, the
design of airplanes and ships, the design of vehicles, the flow of blood in arteries,
the flow of ink in a printer, the locomotion of birds and fish, and so forth. Therefore
it is astonishing that the well-posedness of the Navier–Stokes equations has not
yet been established. Proving or disproving their well-posedness is one of the most
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important open problems in mathematics. A prize of one million dollars awaits the
person who solves it.

An important phenomenon described by the Euler equations is the propagation
of sound waves. In order to construct a simple model for sound waves, let us look
at the Euler equations for a gas at rest. For simplicity we neglect gravity. It is easy
to check that the equations have a solution of the form

�u = 0,

ρ = ρ0,

p = p0 = f (ρ0),
(1.20)

where ρ0 and p0 are constants describing uniform pressure and density. Let us
perturb the gas by creating a localized pressure (for example by producing a
sound out of our throats, or by playing a musical instrument). Assume that the
perturbation is small compared with the original pressure p0. One can therefore
write

�u = ε�u1,

ρ = ρ0 + ερ1, (1.21)

p = p0 + εp1 = f (ρ0) + ε f ′(ρ0)ρ1,

where we denoted the perturbation to the density, velocity and pressure by �u1, ρ1,
and p1, respectively, ε denotes a small positive parameter, and we used (1.17).
Substituting the expansion (1.21) into the Euler equations, and retaining only the
terms that are linear in ε, we find

ρ1
t + ρo �∇ · �u1 = 0,

(1.22)�u1
t + 1

ρ0
�∇ p1 = 0.

Applying the operator �∇· to the second equation in (1.22), and substituting the
result into the time derivative of the first equation leads to

ρ1
t t − f ′(ρ0)�ρ1 = 0. (1.23)

Alternatively we can use the linear relation between p1 and ρ1 to write a similar
equation for the pressure

p1
t t − f ′(ρ0)�p1 = 0. (1.24)

The equation we have obtained is called a wave equation. We shall see later that this
equation indeed describes waves propagating with speed c =

√
f ′(ρ0). In particular,

in the case of waves in a long narrow tube, or in a long and narrow tunnel, the pressure
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only depends on time and on a single spatial coordinate x along the tube. We then
obtain the one-dimensional wave equation

p1
t t − c2 p1

xx = 0. (1.25)

Remark 1.2 Many problems in chemistry, biology and ecology involve the spread
of some substrate being convected by a given velocity field. Denoting the con-
centration of the substrate by C(x, y, z, t), and assuming that the fluid’s ve-
locity does not depend on the concentration itself, we find that (1.13) in the
formulation

Ct + �∇ · (C �u) = 0 (1.26)

describes the spread of the substrate. This equation is naturally called the convection
equation. In Chapter 2 we shall develop solution methods for it.

1.4.3 Vibrations of a string

Many different phenomena are associated with the vibrations of elastic bodies.
For example, recall the wave equation derived in the previous subsection for the
propagation of sound waves. The generation of sound waves also involves a wave
equation – for example the vibration of the sound chords, or the vibration of a string
or a membrane in a musical instrument.

Consider a uniform string undergoing transversal motion whose amplitude is
denoted by u(x, t), where x is the spatial coordinate, and t denotes time. We
also use ρ to denote the mass density per unit length of the string. We shall
assume that ρ is constant. Consider further a small interval (−δ, δ). Just as in
the previous subsection, we shall consider two forces acting on the string: an
external given force (e.g. gravity) acting only in the transversal (y) direction,
whose density is denoted by f (x, t), and an internal force acting between adja-
cent string elements. This internal force is called tension. It will be denoted by
�T . The tension acts on the string element under consideration at its two ends.
A tension �T + acts at the right hand end, and a tension �T − acts at the left hand
end. We assume that the tension is in the direction tangent to the string, and that
it is proportional to the string’s elongation. Namely, we assume the constitutive
law

�T = d
√

1 + u2
x êτ , (1.27)

where d is a constant depending on the material of which the string is made, and
êτ is a unit vector in the direction of the string’s tangent. It is an empirical law, i.e.
it stems from experimental observations. Projecting the momentum conservation
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equation (Newton’s second law) along the y direction we find:∫ δ

−δ

ρutt dl =
∫ δ

−δ

f (x, t)dl + ê2 · ( �T + − �T −) =
∫ δ

−δ

f (x, t)dl +
∫ δ

−δ

(ê2 · �T )x dx,

where dl denotes a length element, and ê2 = (0, 1). Using the constitutive law for
the tension and the following formula for the tangent vector êτ = (1, ux )/

√
1 + u2

x ,

we can write

ê2 · �T = d
√

1 + u2
x ê2 · êτ = dux .

Substituting this equation into the momentum equation we obtain the integral bal-
ance ∫ δ

−δ

ρutt

√
1 + u2

x dx =
∫ δ

−δ

[
f
√

1 + u2
x + duxx

]
dx .

Since this equation holds for arbitrary intervals, we can use Lemma 1.1 once again
to obtain

utt − c2√
1 + u2

x

uxx = f (x, t)

ρ
, (1.28)

where the wave speed is given by c = √
d/ρ. A different string model will be

derived in Chapter 10. The two models are compared in Remark 10.5.
In the case of weak vibrations the slopes of the amplitude are small, and we

can make the simplifying assumption |ux | 	 1. We can then write an approximate
equation:

utt − c2uxx = 1

ρ
f (x, t). (1.29)

Thus, the wave equation developed earlier for sound waves is also applicable to
describe certain elastic waves. Equation (1.29) was proposed as early as 1752 by
the French mathematician Jean d’Alembert (1717–1783). We shall see in Chapter 4
how d’Alembert solved it.

Remark 1.3 We have derived an equation for the transversal vibrations of a string.
What about its longitudinal vibrations? To answer this question, project the mo-
mentum equation along the tangential direction, and again use the constitutive law.
We find that the density of the tension force in the longitudinal direction is given by

∂

∂x

(
d

√
1 + u2

x√
1 + u2

x

)
= 0.

This implies that the constitutive law we used is equivalent to assuming the string
does not undergo longitudinal vibrations!
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1.4.4 Random motion

Random motion of minute particles was first described in 1827 by the British
biologist Robert Brown (1773–1858). Hence this motion is called Brownian motion.
The first mathematical model to describe this motion was developed by Einstein in
1905. He proposed a model in which a particle at a point (x, y) in the plane jumps
during a small time interval δt to a nearby point from the set (x ± δx, y ± δx).
Einstein showed that under a suitable assumption on δx and δt , the probability that
the particle will be found at a point (x, y) at time t satisfies the heat equation. His
model has found many applications in physics, biology, chemistry, economics etc.
We shall demonstrate now how to obtain a PDE from a typical problem in the theory
of Brownian motion.

Consider a particle in a two-dimensional domain D. For simplicity we shall
limit ourselves to the case where D is the unit square. Divide the square into N 2

identical little squares, and denote their vertices by {(xi , y j )}. The size of each edge
of a small square will be denoted by δx . A particle located at an internal vertex
(xi , y j ) jumps during a time interval δt to one of its nearest neighbors with equal
probability. When the particle reaches a boundary point it dies.

Question What is the life expectancy u(x, y) of a particle that starts its life at a
point (x, y) in the limit

δx → 0, δt → 0,
(δx)2

2δt
= k? (1.30)

We shall answer the question using an intuitive notion of the expectancy. Obvi-
ously a particle starting its life at a boundary point dies at once. Thus

u(x, y) = 0, (x, y) ∈ ∂ D. (1.31)

Consider now an internal point (x, y). A particle must have reached this point
from one of its four nearest neighbors with equal probability for each neighbor. In
addition, the trip from the neighboring point lasted a time interval δt . Therefore u
satisfies the difference equation

u(x, y) = δt + 1

4
[u(x − δx, y) + u(x + δx, y) + u(x, y − δx) + u(x, y + δx)].

(1.32)
We expand all functions on the right hand side into a Taylor series, assuming u ∈ C4.
Dividing by δt and taking the limit (1.30) we obtain (see also Chapter 11)

�u = −1

k
, (x, y) ∈ D. (1.33)

An equation of the type (1.33) is called a Poisson equation. We shall elaborate on
such equations in Chapter 7.
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The model we just investigated has many applications. One of them relates to the
analysis of variations in stock prices. Many models in the stock market are based
on assuming that stocks prices vary randomly. Assume for example that a broker
buys a stock at a certain price m. She decides in advance to sell it if its price reaches
an upper bound m2 (in order to cash in her profit) or a lower bound m1 (to minimize
losses in case the stock dives). How much time on average will the broker hold
the stock, assuming that the stock price performs a Brownian motion? This is a
one-dimensional version of the model we derived. The equation and the associated
boundary conditions are

ku′′(m) = −1, u(m1) = u(m2) = 0. (1.34)

The reader will be asked to solve the equation in Exercise 1.6.

1.4.5 Geometrical optics

We have seen two derivations of the wave equation – one for sound waves, and
another one for elastic waves. Yet there are many other physical phenomena
controlled by wave propagation. Two notable examples are electromagnetic waves
and water waves. Although there exist many analytic methods for solving wave
equations (we shall learn some of them later), it is not easy to apply them in
complex geometries. One might be tempted to proceed in such cases to numerical
methods (see Chapter 11). The problem is that in many applications the waves
are of very high frequency (or, equivalently, of very small wavelength). To
describe such waves we need a resolution that is considerably smaller than a single
wavelength. Consider for example optical phenomena. They are described by a
wave equation; a typical wavelength for the visible light part of the spectrum is
about half a micron. Assuming that we use five points per wavelength to describe
the wave, and that we deal with a three-dimensional domain with linear dimension
of 10−1 meters, we conclude that we need altogether about 1017 points! Even
storing the data is a difficult task, not to mention the formidable complexity of
solving equations with so many unknowns (Chapter 11).

Fortunately it is possible to turn the problem around and actually use the short
wavelength to derive approximate equations that are much simpler to solve, and,
yet, provide a fair description of optics. Consider for this purpose the wave equation
in R

3:

vt t − c2(�x)�v = 0. (1.35)

Notice that the wave’s speed need not be constant. We expect solutions that are
oscillatory in time (see Chapter 5). Therefore we seek solutions of the form

v(x, y, z, t) = eiωtψ(x, y, z).
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It is convenient to introduce at this stage the notation k = ω/c0 and n = c0/c(x),
where c0 is an average wave velocity in the medium. Substituting v into (1.35)
yields

�ψ + k2n2(�x)ψ = 0. (1.36)

The function n(x) is called the refraction index. The parameter k is called the wave
number. It is easy to see that k−1 has the dimension of length. In fact, the wavelength
is given by 2πk−1. As was explained above, the wavelength is often much smaller
than any other length scale in the problem. For example, spectacle lenses involve
scales such as 5 mm (thickness), 60 mm (radius of curvature) or 40 mm (frame
size), all of them far greater than half a micron which is a typical wavelength. We
therefore assume that the problem is scaled with respect to one of the large scales,
and hence k is a very large number. To use this fact we seek a solution to (1.36) of
the form:

ψ(x, y, z) = A(x, y, z; k)eikS(x,y,z). (1.37)

Substituting (1.37) into (1.36), and assuming that A is bounded with respect to k,
we get

A[| �∇S|2 − n2(�x)] = O

(
1

k

)
.

Thus the function S satisfies the eikonal equation

| �∇S| = n(�x). (1.38)

This equation, postulated in 1827 by the Irish mathematician William Rowan Hamil-
ton (1805–1865), provides the foundation for geometrical optics. It is extremely
useful in many applications in optics, such as radar, contact lenses, projectors,
mirrors, etc. In Chapter 2 we shall develop a method for solving eikonal equa-
tions. Later, in Chapter 9, we shall encounter the eikonal equation from a different
perspective.

1.4.6 Further real world equations
� The Laplace equation

Many of the models we have examined so far have something in common – they involve
the operator

�u = ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
.
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This operator is called the Laplacian. Probably the ‘most important’ PDE is the Laplace
equation

�u = 0. (1.39)

The equation, which is a special case of the Poisson equation we introduced earlier, was
proposed in 1780 by the French mathematician Pierre-Simon Laplace (1749–1827) in
his work on gravity. Solutions of the Laplace equation are called harmonic functions.
Laplace’s equation can be found everywhere. For example, in the heat conduction prob-
lems that were introduced earlier, the temperature field is harmonic when temporal equi-
librium is achieved. The equation is also fundamental in mechanics, electromagnetism,
probability, quantum mechanics, gravity, biology, etc.

� The minimal surface equation
When we dip a narrow wire in a soap bath, and then lift the wire gently out of the bath, we
can observe a thin membrane spanning the wire. The French mathematician Joseph-Louis
Lagrange (1736–1813) showed in 1760 that the surface area of the membrane is smaller
than the surface area of any other surface that is a small perturbation of it. Such special
surfaces are called minimal surfaces. Lagrange further demonstrated that the graph of a
minimal surface satisfies the following second-order nonlinear PDE:

(1 + u2
y)uxx − 2ux uyuxy + (1 + u2

x )uyy = 0. (1.40)

When the slopes of the minimal surface are small, i.e. ux , uy 	 1, we see at once that
(1.40) can be approximated by the Laplace equation. We shall return to the minimal
surface equation in Chapter 10.

� The biharmonic equation
The equilibrium state of a thin elastic plate is provided by its amplitude function u(x, y),
which describes the deviation of the plate from its horizontal position. It can be shown
that the unknown function u satisfies the equation

�2u = �(�u) = uxxxx + 2uxxyy + uyyyy = 0. (1.41)

For an obvious reason this equation is called the biharmonic equation. Notice that in
contrast to all the examples we have seen so far, it is a fourth-order equation. We fur-
ther point out that almost all the equations we have seen here, and also other important
equations such as Maxwell’s equations, the Schrödinger equation and Newton’s equation
for the gravitational field are of second order. We shall return to the plate equation in
Chapter 10.

� The Schrödinger equation
One of the fundamental equations of quantum mechanics, derived in 1926 by the Austrian
physicist Erwin Schrödinger (1887–1961), governs the evolution of the wave function u
of a particle in a potential field V :

i�
∂u

∂t
= − �

2m
�u + V u. (1.42)
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Here V is a known function (potential), m is the particle’s mass, and � is Planck’s constant
divided by 2π . We shall consider the Schrödinger equation for the special case of an
electron in the hydrogen atom in Chapter 9.

� Other equations
There are many other PDEs that are central to the study of different problems in science
and technology. For example we mention: the Maxwell equations of electromagnetism;
reaction–diffusion equations that model chemical reactions; the equations of elasticity;
the Korteweg–de Vries equation for solitary waves; the nonlinear Schrödinger equation in
nonlinear optics and in superfluids; the Ginzburg–Landau equations of superconductivity;
Einstein’s equations of general relativity, and many more.

1.5 Associated conditions

PDEs have in general infinitely many solutions. In order to obtain a unique solution
one must supplement the equation with additional conditions. What kind of condi-
tions should be supplied? It turns out that the answer depends on the type of PDE
under consideration. In this section we briefly review the common conditions, and
explain through examples their physical significance.

1.5.1 Initial conditions

Let us consider the transport equation (1.26) in one spatial dimension as a prototype
for equations of first order. The unknown function C(x, t) is a surface defined over
the (x, t) plane. It is natural to formulate a problem in which one supplies the con-
centration at a given time t0, and then to deduce from the equation the concentration
at later times. Namely, we solve the problem consisting of the convection equation

Ct + �∇ · (C �u) = 0,

and the condition

C(x, t0) = C0(x). (1.43)

This problem is called an initial value problem. Geometrically speaking, condition
(1.43) determines a curve through which the solution surface must pass. We can
generalize (1.43) by imposing a curve � that must lie on the solution surface, so
that the projection of � on the (x, t) plane is not necessarily the x axis. In Chapter 2
we shall show that under suitable assumptions on the equation and �, there indeed
exists a unique solution.

Another case where it is natural to impose initial conditions is the heat equation
(1.9). Here we provide the temperature distribution at some initial time (say t = 0),
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and solve for its distribution at later times, namely, the initial condition for (1.9) is
of the form u(x, y, z, 0) = u0(x, y, z).

The last two examples involve PDEs with just a first derivative with respect
to t . In analogy with the theory of initial value problems for ODEs, we expect
that equations that involve second derivatives with respect to t will require two
initial conditions. Indeed, let us look at the wave equation (1.29). As explained in
the previous section, this equation is nothing but Newton’s second law, equating
the mass times the acceleration and the forces acting on the string. Therefore it is
natural to supply two initial conditions, one for the initial location of the string, and
one for its initial velocity:

u(x, 0) = u0(x), ut (x, 0) = u1(x). (1.44)

We shall indeed prove in Chapter 4 that these conditions, together with the wave
equation lead to a well-posed problem.

1.5.2 Boundary conditions

Another type of constraint for PDEs that appears in many applications is called
boundary conditions. As the name indicates, these are conditions on the behavior
of the solution (or its derivative) at the boundary of the domain under consideration.
As a first example, consider again the heat equation; this time, however, we limit
ourselves to a given spatial domain �:

ut = k�u (x, y, z) ∈ �, t > 0. (1.45)

We shall assume in general that � is bounded. It turns out that in order to obtain a
unique solution, one should provide (in addition to initial conditions) information
on the behavior of u on the boundary ∂�. Excluding rare exceptions, we encounter
in applications three kinds of boundary conditions. The first kind, where the values
of the temperature on the boundary are supplied, i.e.

u(x, y, z, t) = f (x, y, z, t) (x, y, z) ∈ ∂�, t > 0, (1.46)

is called a Dirichlet condition in honor of the German mathematician Johann
Lejeune Dirichlet (1805–1859). For example, this condition is used when the
boundary temperature is given through measurements, or when the temperature
distribution is examined under a variety of external heat conditions.

Alternatively one can supply the normal derivative of the temperature on the
boundary; namely, we impose (as usual we use here the notation ∂n to denote the
outward normal derivative at ∂�)

∂nu(x, y, z, t) = f (x, y, z, t) (x, y, z) ∈ ∂�, t > 0. (1.47)
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This condition is called a Neumann condition after the German mathematician Carl
Neumann (1832–1925). We have seen that the normal derivative ∂nu describes the
flux through the boundary. For example, an insulating boundary is modeled by
condition (1.47) with f = 0.

A third kind of boundary condition involves a relation between the boundary
values of u and its normal derivative:

α(x, y, z)∂nu(x, y, z, t) + u(x, y, z, t) = f (x, y, z, t) (x, y, z) ∈ ∂ D, t > 0.

(1.48)

Such a condition is called a condition of the third kind. Sometimes it is also called
the Robin condition.

Although the three types of boundary conditions defined above are by far the
most common conditions seen in applications, there are exceptions. For example,
we can supply the values of u at some parts of the boundary, and the values of
its normal derivative at the rest of the boundary. This is called a mixed boundary
condition. Another possibility is to generalize the condition of the third kind and
replace the normal derivative by a (smoothly dependent) directional derivative of
u in any direction that is not tangent to the boundary. This is called an oblique
boundary condition. Also, one can provide a nonlocal boundary condition. For
example, one can provide a boundary condition relating the heat flux at each point
on the boundary to the integral of the temperature over the whole boundary.

To illustrate further the physical meaning of boundary conditions, let us consider
again the wave equation for a string:

utt − c2uxx = f (x, t) a < x < b, t > 0. (1.49)

When the locations of the end points of the string are known, we supply Dirichlet
boundary conditions (Figure 1.1(a)):

u(a, t) = β1(t), u(b, t) = β2(t), t > 0. (1.50)

Another possibility is that the tension at the end points is given. From our deriva-
tion of the string equation in Subsection 1.4.3 it follows that this case involves a

baba

(a) (b)

Figure 1.1 Illustrating boundary conditions for a string.



20 Introduction

Neumann condition:

ux (a, t) = β1(t), ux (b, t) = β2(t), t > 0. (1.51)

Thus, for example, when the end points are free to move in the transversal direction
(Figure 1.1(b)), we shall use a homogeneous Neumann condition, i.e. β1 = β2 = 0.

1.6 Simple examples

Before proceeding to develop general solution methods, let us warm up with a few
very simple examples.

Example 1.4 Solve the equation uxx = 0 for an unknown function u(x, y). We can
consider the equation as an ODE in x , with y being a parameter. Thus the general
solution is u(x, y) = A(y)x + B(y). Notice that the solution space is huge, since
A(y) and B(y) are arbitrary functions.

Example 1.5 Solve the equation uxy + ux = 0. We can transform the problem
into an ODE by setting v = ux . The new function v(x, y) satisfies the equation
vy + v = 0. Treating x as a parameter, we obtain v(x, y) = C(x)e−y . Integrating v

we construct the solution to the original problem: u(x, y) = D(x)e−y + E(y).

Example 1.6 Find a solution of the wave equation utt − 4uxx = sin t + x2000. No-
tice that we are asked to find a solution, and not the most general solution. We shall
exploit the linearity of the wave equation. According to the superposition principle,
we can split u = v + w, such that v and w are solutions of

vt t − 4vxx = sin t, (1.52)

wt t − 4wxx = x2000. (1.53)

The advantage gained by this step is that solutions for each of these equations can
be easily obtained:

v(x, t) = − sin t, w(x, t) = − 1

4 × 2001 × 2002
x2002.

Thus

u(x, t) = − sin t − 1

4 × 2001 × 2002
x2002.

There are many other solutions. For example, it is easy to check that if we add
to the solution above a function of the form f (x − 2t), where f (s) is an arbitrary
twice differentiable function, a new solution is obtained.
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Unfortunately one rarely encounters real problems described by such simple equa-
tions. Nevertheless, we can draw a few useful conclusions from these examples.
For instance, a commonly used method is to seek a transformation from the original
variables to new variables in which the equation takes a simpler form. Also, the
superposition principle, which enables us to decompose a problem into a set of far
simpler problems, is quite general.

1.7 Exercises

1.1 Show that each of the following equations has a solution of the form u(x, y) = f (ax +
by) for a proper choice of constants a, b. Find the constants for each example.

(a) ux + 3uy = 0.

(b) 3ux − 7uy = 0.

(c) 2ux + πuy = 0.

1.2 Show that each of the following equations has a solution of the form u(x, y) = eαx+βy .
Find the constants α, β for each example.

(a) ux + 3uy + u = 0.

(b) uxx + uyy = 5ex−2y .

(c) uxxxx + uyyyy + 2uxxyy = 0.

1.3 (a) Show that there exists a unique solution for the system

ux = 3x2 y + y,

uy = x3 + x, (1.54)

together with the initial condition u(0, 0) = 0.
(b) Prove that the system

ux = 2.999999x2 y + y,

uy = x3 + x (1.55)

has no solution at all.
1.4 Let u(x, y) = h(

√
x2 + y2) be a solution of the minimal surface equation.

(a) Show that h(r ) satisfies the ODE

rh′′ + h′(1 + (h′)2) = 0.

(b) What is the general solution to the equation of part (a)?
1.5 Let p : R → R be a differentiable function. Prove that the equation

ut = p(u)ux t > 0

has a solution satisfying the functional relation u = f (x + p(u)t), where f is a differ-
entiable function. In particular find such solutions for the following equations:
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(a) ut = kux .
(b) ut = uux .
(c) ut = u sin(u)ux .

1.6 Solve (1.34), and compute the average time for which the broker holds the stock.
Analyze the result in light of the financial interpretation of the parameters (m1, m2, k).

1.7 (a) Consider the equation uxx + 2uxy + uyy = 0. Write the equation in the coordinates
s = x , t = x − y.
(b) Find the general solution of the equation.
(c) Consider the equation uxx − 2uxy + 5uyy = 0. Write it in the coordinates s = x + y,
t = 2x .




