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Predictability of weather and climate: from
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T. N. Palmer
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Weather Forecasts, Reading

1.1 Introduction

A revolution in weather and climate forecasting is in progress, made possible by

theoretical advances in our understanding of the predictability of weather and climate

on the one hand, and by the extraordinary developments in supercomputer technology

on the other. Specifically, through ensemble prediction, whose historical development

has been documented by Lewis (2005), weather and climate forecasting is set to enter

a new era, addressing quantitatively the prediction of weather and climate risk in a

range of commercial and humanitarian applications. This chapter gives some back-

ground to this revolution, with specific examples drawn from a range of timescales.

1.2 Perspectives on predictability: theoretical
and practical

Predictions of weather and climate are necessarily uncertain; our observations of

weather and climate are uncertain and incomplete, the models into which we assim-

ilate this data and predict the future are uncertain, and external effects such as vol-

canoes and anthropogenic greenhouse emissions are also uncertain. Fundamentally,

therefore, we should think of weather and climate prediction in terms of equations

whose basic prognostic variables are probability densities ρ(X, t), where X denotes
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Figure 1.1 Schematic illustration of the climatological probability distribution of

some climatic variable X (solid line) and a forecast probability distribution (dotted

line) in two different situations. The forecast probability distribution in (a) is

obviously predictable. In a theoretical approach to predictability, ρ(X, t) − ρC (X ) in

(b) may not be significantly different from zero overall. However, considered more

pragmatically, the forecast probability distribution in (b) can be considered

predictable if the prediction that it is unlikely that X will exceed Xcrit can influence

decision-makers.

some climatic variable and t denotes time. In this way, ρ(X, t)dV represents the

probability that, at time t, the true value of X lies in some small volume dV of state

space. Prognostic equations for ρ, the Liouville and Fokker–Planck equations, are

described in Ehrendorfer (this volume). In practice these equations are solved by

ensemble techniques, as described in Buizza (this volume).

The question of whether or not X is predictable depends on whether the forecast

probability density ρ(X, t) is sufficiently different from some prior estimate ρC (X ),

usually taken as the climatological probability density of X. What do we mean by

‘sufficiently different’? One could, for example, apply a statistical significance test

to the difference ρ(X, t) − ρC (X ). On this basis, the hypothetical forecast probabil-

ity distribution shown as the dotted curve in Figure 1.1(a) is certainly predictable;
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but the forecast probability distribution shown in Figure 1.1(b) may well not be

predictable.

However, this notion of predictability is a rather idealised one and takes no account

of how ρ(X, t) might be used in practice. In a more pragmatic approach to predictabil-

ity, one would ask whether ρ(X, t) is sufficiently different from ρC (X ) to influence

decision-makers. For example, in Figure 1.1, an aid agency might be interested only

in the right-hand tail of the distribution, because disease A only becomes prevalent

when X > Xcrit. On the basis of Figure 1.1(b), the agency may decide to target scarce

resources elsewhere in the coming season, since the forecast probability that X >

Xcrit is rather low.

These two perspectives on the problem of how to define predictability reflect

the evolving nature of the study of predictability of weather and climate predic-

tion; from a rather theoretical and idealised pursuit to one which recognises that

quantification of predictability is an essential part of operational activities in a wide

range of applications. The latter perspective reflects the fact that the full economic

value of meteorological predictions will only be realised when quantitatively reli-

able flow-dependent predictions of weather and climate risk are achievable (Palmer,

2002).

The scientific basis for ensemble prediction is illustrated in Figure 1.2, based

on the famous Lorenz (1963) model. Figure 1.2 shows that the evolution of some

isopleth of ρ(X, t) depends on starting conditions. This is a consequence of the fact

that the underlying equations of motion

Ẋ = F[X ] (1.1)

are non-linear, so that the Jacobian d F/d X in the linearised equation

d δX

dt
=

d F

d X
δX (1.2)

depends at least linearly on the state X about which Equation (1.1) is linearised. As

such, the so-called tangent propagator

M(t, t0) = exp

∫ t

t0

d F

d X
dt ′ (1.3)

depends on the non-linear trajectory X (t) about which the linearisation is performed.

Hence, the evolved perturbations

δX (t) = M(t, t0) δX (t0) (1.4)

depend not only on δX (t0), but also on the region of phase space through which the

underlying non-linear trajectory passes.

It is of interest to note that the formal solution of the Liouville equation, which

describes the evolution of ρ(X, t) arising from initial error only (Ehrendorfer, this

volume, Eq. (4.49)), can be written using the tangent propagator (for all time in
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Figure 1.2 Finite time ensembles of the Lorenz (1963) system illustrating the fact

that in a non-linear system, the evolution of the forecast probability density ρ(X, t)

is dependent on initial state.

the future, not just the time for which the tangent-linear approximation is valid).

Specifically

ρ(X, t) = ρ(X ′, t0)/|det M(t, t0)| (1.5)

where X′ corresponds to the initial state which, under the action of Eq. (1.1), evolves

into the state X at time t. Figure 1.2 shows solutions to Eq. (1.5) using an ensemble-

based approach.

To illustrate the more practical implications of the fact that ρ(X, t) depends on

initial state, I want to reinterpret Figure 1.2 by introducing you to Charlie, a builder

by profession, and a golfing colleague of mine! Charlie, like many members of my

golf club, takes great pleasure in telling me when (he thinks) the weather forecast

has gone wrong. This is mostly done in good humour, but on one particular occasion

Charlie was in a black mood. ‘I have only four words to say to you,’ he announced,
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‘How do I sue?’ I looked puzzled. He continued: ‘The forecast was for a night-time

minimum temperature of five degrees. I laid three thousand square yards of concrete.

There was a frost. It’s all ruined. I repeat – how do I sue?’

If only Charlie was conversant with Lorenz (1963) I could have used Figure 1.2 to

illustrate how in future he will be able to make much more informed decisions about

when, and when not, to lay concrete! Suppose the Lorenz equations represent part of

an imaginary world inhabited by builders, builders’ customers, weather forecasters

and lawyers. In this Lorenz world, the weather forecasters are sued if the forecasts

are wrong! The weather in the Lorenz world is determined by the Lorenz (1963)

equations where all states on the right-hand lobe of the attractor are ‘frosty’ states,

and all states on the left-hand lobe of the attractor are ‘frost-free’ states. In this

imaginary world, Charlie is planning to lay a large amount of concrete in a couple of

days’ time. Should he order the ready-mix concrete lorries to the site? He contacts the

Lorenzian Meteorological Office for advice. On the basis of the ensemble forecasts

in the top left of Figure 1.2 he clearly should not – all members of the ensemble

predict frosty weather. On the basis of the ensemble forecasts in the bottom left of

Figure 1.2 he also should not – in this case it is almost impossible to predict whether

it will be frosty or not. Since the cost of buying and laying concrete is significant, it

is not worth going ahead when the risk of frost is so large.

How about the situation shown in the top right of Figure 1.2? If we took the

patronising but not uncommon view that Charlie, as a member of the general public,

would only be confused by a probability forecast, then we might decide to collapse

the ensemble into a consensus (i.e. ensemble-mean) prediction. The ensemble-mean

forecast indicates that frost will not occur. Perhaps this is equivalent to the real-world

situation that got Charlie so upset. Lorenzian forecasters, however, will be cautious

about issuing a deterministic forecast based on the ensemble mean, because, in the

Lorenz world, Charlie can sue!

Alternatively, the forecasters could tell Charlie not to lay concrete if there is even

the slightest risk of frost. But Charlie will not thank them for that either. He cannot

wait forever to lay concrete since he has fixed costs, and if he doesn’t complete this

job, he may miss out on other jobs. Maybe Charlie will never be able to sue, but

neither will he bother obtaining the forecasts from the Lorenzian Meterorological

Office.

Suppose Charlie’s fixed costs are C, and that he loses L by laying concrete when

a frost occurs. Then a logical decision strategy would be to lay concrete when the

ensemble-based estimate of the probability of frost is less than C/L. The meteorol-

ogists don’t know Charlie’s C/L, so the best they can do is provide him with the full

probability forecast, and allow him to decide whether or not to lay concrete.

Clearly the probability forecast will only be of value to Charlie if he saves money

using these ensemble forecasts. This notion of ‘potential economic value’ (Murphy,

1977; Richardson, this volume) is conceptually quite different from the notion of

skill (in the meteorological sense of the word), since value cannot be assessed by
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6 T. N. Palmer

analysing meteorological variables alone; value depends also on the user’s economic

parameters.

The fact that potential economic value does not depend solely on meteorology

means that we cannot use meteorological skill scores alone if we want to assess

whether one forecast system is more valuable than another (e.g. to Charlie). This is

relevant to the question of whether it would be better to utilise computer resources to

increase ensemble size or increase model resolution. As discussed in Palmer (2002),

the answer to this question depends on C/L. For users with small C/L, more value

may accrue from an increase in ensemble size (since decisions depend on whether

or not relatively small probability thresholds have been reached), whilst for larger

C/L more value may accrue from the better representation of weather provided by a

higher-resolution model.

In the Lorenz world, Charlie never sues the forecasters for ‘wrong’ forecasts.

When the forecast is uncertain, the forecasters say so, and with precise and reliable

estimates of uncertainty. Charlie makes his decisions based on these forecasts and if

he makes the wrong decisions, only he, and lady luck, are to blame!

1.3 Why are forecasts uncertain?

Essentially, there are three reasons why forecasts are uncertain: uncertainty in the

observations used to define the initial state, uncertainty in the model used to assimilate

the observations and to make the forecasts, and uncertainty in ‘external’ parameters.

Let’s consider the last of these uncertainties first. For example, the aerosol content

of the atmosphere can be significantly influenced by volcanic eruptions, which are

believed to be unpredictable more than a few days ahead. Also, uncertainty in the

change in atmospheric CO2 over the coming decades depends on which nations sign

agreements such as the Kyoto protocol.

In principle, perhaps, ‘stochastic volcanoes’ could be added to an ensemble pre-

diction system – though this seems a rather fanciful idea. Also, uncertainties in

humankind’s activities can, perhaps, be modelled by coupling our physical climate

model to an econometric model. However, we will not deal further with such uncer-

tainties of the ‘third kind’ but rather concentrate on the first two.

1.3.1 Initial uncertainty

At ECMWF, for example, the analysed state Xa of the atmosphere is found by

minimising the cost function

J (X ) = 1
2
(X − Xb)T B−1 (X − Xb) + 1

2
(H X − Y )T O−1 (H X − Y ) (1.6)

where Xb is the background state, B and O are covariance matrices for the probability

density functions (pdf) of background error and observation error, respectively, H is
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1 Predictability: from theory to practice 7

Figure 1.3 Isopleths of probability that the region enclosed by the isopleths contains

truth at initial and forecast time. The associated dominant singular vector at initial

and final time is also shown.

the so-called observation operator, and Y denotes the vector of available observations

(e.g. Courtier et al., 1998). The Hessian

∇∇ J = B−1 + H T O−1 H ≡ A−1 (1.7)

of J defines the inverse analysis error covariance matrix.

Figure 1.3 shows, schematically, an isopleth of the analysis error covariance

matrix, and its evolution under the action of the tangent propagator M (see Eqs. 1.3

and 1.4). The vector pointing along the major axis at forecast time corresponds to the

leading eigenvector of the forecast error covariance matrix. Its pre-image at initial

time corresponds to the leading singular vector of M, determined with respect to

unit norm in the metric given by A. The singular vectors of M correspond to the

eigenvectors of MT M in the generalised eigenvector equation

MT M δx(t0) = −λA−1δx(t0). (1.8)

Given pdfs of uncertainty based on Eq. (1.6), we can in principle perform a Monte

Carlo sampling of the Hessian-based initial pdf and produce an ensemble forecast

system based on this initial sampling.

There are three reasons for not adopting this strategy.

Firstly, there is the so-called ‘curse of dimensionality’. The state space of a weather

prediction model has about 107 dimensions. Many of these dimensions are not dynam-

ically unstable (i.e. are not associated with positive singular values). In this sense, a

random sampling of the initial probability density would not be a computationally

efficient way of estimating the forecast probability density. This point was made

explicitly in Lorenz’s analysis of his 28-variable model (Lorenz, 1965):
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If more realistic models . . . also have the property that a few of the eigenvalues

of MMT are much larger than the remaining, a study based upon a small

ensemble of initial errors should . . . give a reasonable estimate of the growth rate

of random error. . . . It would appear, then, that the best use could be made of

computational time by choosing only a small number of error fields for

superposition upon a particular initial state.

Studies of realistic atmospheric models show that the singular values of the first 20–

30 singular vectors are indeed much larger than the remainder (Molteni and Palmer,

1993; Buizza and Palmer, 1995; Reynolds and Palmer, 1998).

The second reason for not adopting a Monte Carlo strategy is that in practice

Eq. (1.6) only provides an estimate of part of the actual initial uncertainty; there are

other sources of initial uncertainty that are not well quantified – what might be called

the ‘unknown unknowns’. Consider the basic notion of data assimilation: to assimilate

observations that are either made at a point or over a pixel size of kilometres into

a model whose smallest resolvable scale is many hundreds of kilometres (bearing

in mind the smallest resolvable scale will be many times the model grid). Now

sometimes these point or pixel observations may be representative of circulation

scales that are well resolved by the model (e.g. if the flow is fairly laminar at the

time the observation is made); on other occasions the observations may be more

representative of scales which the model cannot resolve (e.g. if the flow is highly

turbulent at the time the observation is made, or if the observation is sensitive to

small-scale components of the circulation, as would be the case for humidity or

precipitation).

In the latter case, the practice of using simple polynomial interpolation in the

observation operator H in Eq. (1.6) to take the model variable X to the site of the

observation, is likely to be poor. However, this is not an easily quantified uncertainty–

since, ultimately, the uncertainty relates to numerical truncation error in the forecast

model (see the discussion below). Similarly, consider the problem of quality control.

An observation might be rejected as untrustworthy by a quality-control procedure if

the observation does not agree with its neighbours and is different from the back-

ground (first-guess) field. Alternatively, the observation might be providing the first

signs of a small-scale circulation feature, poorly resolved by either the model or

the observing network. For these types of reason, a Monte Carlo sampling of a pdf

generated by Eq. (1.6) is likely to be an underestimate of the true uncertainty.

The third reason for not adopting a Monte Carlo strategy is not really independent

of the first two, but highlights an issue of pragmatic concern. Let us return to Charlie,

as discussed above. Charlie is clearly disgruntled by the occasional poor forecast of

frost, especially if it costs him money. But just imagine how much more disgruntled

he would be, having invested time and money to adapt his decision strategies to a

new weather risk service based on the latest, say, Multi-Centre Ensemble Forecast

System, if no member of the new ensemble predicts severe weather, and severe
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1 Predictability: from theory to practice 9

Figure 1.4 May–July 2002 average root-mean-square (rms) error of the ensemble-

mean (solid lines) and ensemble standard deviation (dotted lines) of the ECMWF,

NCEP and MSC ensemble forecast systems. Values refer to the 500 hPa geopotential

height over the Northern Hemisphere latitudinal band 20–80 N. From Buizza et al.

(2003, 2005).

weather occurs! Just one failure of this sort will compromise the credibility of the

new system.

To take this into account, a more conservative approach to sampling initial pertur-

bations is needed, conservative in the sense of tending towards sampling perturbations

that are likely to have significant impact on the forecast.

For these three reasons (together with the fact that instabilities in the atmosphere

are virtually never of the normal-mode type: Palmer, 1988; Molteni and Palmer,

1993; Farrell and Ioannou, this volume and Ioannou and Farrell, this volume), the

initial perturbations of the ECMWF ensemble prediction system are based on the

leading singular vectors of M (Buizza, this volume).

The relative performance of the singular-vector perturbations can be judged from

Figure 1.4 (Buizza et al., 2003), based on a comparison of ensemble prediction sys-

tems at ECMWF (Palmer et al., 1993; Molteni et al., 1996), NCEP (US National
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Centers for Environmental Prediction; Toth and Kalnay, 1993) and MSC (Meteo-

rological Service of Canada; Houtekamer et al., 1996); the latter systems based on

bred vectors and ensemble data assimilation respectively. The solid lines show the

ensemble-mean root-mean-square error of each of the three forecast systems, the

dashed lines show the spread of the ensembles about the ensemble mean. At initial

time, both NCEP and MSC perturbations are inflated in order that the spread and

skill are well calibrated in the medium range. The growth of perturbations in the

ECMWF system, by contrast, appears to be more realistic, and overall the system

appears better calibrated to the mean error.

1.3.2 Model uncertainty

From the discussion in the last section, part of the reason initial conditions are

uncertain is that (e.g. in variational data assimilation) there is no rigorous operational

procedure for comparing a model state X with an observation Y. The reason that

there is no rigorous procedure is directly related to the fact that the model cannot

be guaranteed to resolve well the circulation or weather features that influence the

observation. In this respect model error is itself a component of initial error. Of

course, model error plays an additional role as one integrates, forward in time, the

model equations from the given initial state.

Unfortunately, there is no underlying theory which allows us to estimate the statis-

tical uncertainty in the numerical approximations we make when attempting to inte-

grate the equations of climate on a computer. Moreover, an assessment of uncertainty

has not, so far, been a requirement in the development of subgrid parametrisations.

Parametrisation is a procedure to approximate the effects of unresolved processes

on the resolved scales. The basis of parametrisation, at least in its conventional form,

requires us to imagine that within a grid box there exists an ensemble of incoherent

subgrid processes in secular equilibrium with the resolved flow, and whose effect

on the resolved flow is given by a deterministic formula representing the mean (or

bulk) impact of this ensemble. Hence a parametrisation of convection is based on

the notion of the bulk effect of an incoherent ensemble of convective plumes within

the grid box, adjusting the resolved scales back towards convective neutrality; a

parametrisation of orographic gravity-wave drag is based on the notion of the bulk

effect of an incoherent ensemble of breaking orographic gravity waves applying a

retarding force to the resolved scale flow.

A schematic representation of parametrisation in a conventional weather or climate

prediction model is shown in the top half of Figure 1.5. Within this framework,

uncertainties in model formulation can be represented in the following hierarchical

form:

� the multimodel ensemble whose elements comprise different weather or

climate prediction models;
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