THE PALAEOLITHIC SETTLEMENT OF ASIA

This book provides the first analysis and synthesis of the evidence of the earliest inhabitants of Asia before the appearance of modern humans 100,000 years ago. Asia has received far less attention than Africa and Europe in the search for human origins, but it is no longer considered to be of marginal importance. Indeed, a global perspective on human origins cannot be properly attained without a detailed consideration of the largest continent. In this study, Robin Dennell examines a variety of sources, including the archaeological evidence, the fossil hominin record, and the environmental and climatic background from Southwest, Central, South, and Southeast Asia, as well as China. He presents an authoritative and comprehensive framework for investigations of Asia’s oldest societies, challenges many long-standing assumptions about its earliest inhabitants, and places Asia centrally in the discussion of human evolution in the past two million years.

Robin Dennell is Professor of Human Origins at the University of Sheffield. A former Leverhulme Senior Research Fellow and British Academy Research Professor, he is the author of European Economic Prehistory and Early Hominin Landscapes in Northern Pakistan: Investigations in the Pabbi Hills.
CAMBRIDGE WORLD ARCHAEOLOGY

SERIES EDITOR
NORMAN YOFFEE, University of Michigan

EDITORIAL BOARD
SUSAN ALCOCK, Brown University
TOM DILLEHAY, Vanderbilt University
STEPHEN SHENNAN, University College London
CARLA SINOPOLI, University of Michigan

The Cambridge World Archaeology series is addressed to students and professional archaeologists and to academics in related disciplines. Each volume presents a survey of the archaeology of a region of the world, providing an up-to-date account of research and integration of recent findings with new concerns of interpretation. Although the focus is on a specific region, broader cultural trends are discussed and the implications of regional findings for cross-cultural interpretations considered. The authors also bring anthropological and historical expertise to bear on archaeological problems and show how both new data and changing intellectual trends in archaeology shade inferences about the past.

RECENT BOOKS IN THE SERIES
LARRY S. BARHAM AND PETER J. MITCHELL, The First Africans
CHRISTOPHER POOL, Olmec Archaeology and Early Mesoamerica
SAMUEL M. WILSON, The Archaeology of the Caribbean
PHILIP L. KOHL, The Making of Bronze Age Eurasia
RICHARD BRADLEY, The Prehistory of Britain and Ireland
LUDMILA KORYAKOVA AND ANDREJ EPIMAKHOV, The Urals and Western Siberia in the Bronze and Iron Ages
DAVID WENGROW, The Archaeology of Early Egypt
PAUL RAINBIRD, The Archaeology of Micronesia
PETER M. G. AKKERMANS AND GLENN M. SCHWARTZ, The Archaeology of Syria
TIMOTHY INSOILL, The Archaeology of Islam in Sub-Saharan Africa
THE PALAEOLITHIC SETTLEMENT
OF ASIA

ROBIN DENNELL

University of Sheffield
For all those — past, present, and future — interested in the early prehistory of Asia.
CONTENTS

List of Tables, Figures, and Boxes xi
Preface .. xix

1. Asia and Its Place in Palaeoanthropology 1
2. The African Background to the Colonisation of Asia 9
3. The Climatic and Environmental Background to Hominin Settlement in Asia before 1 MA 35
4. The Earliest Inhabitants of Southwest Asia 82
5. The Earliest Inhabitants of South and Southeast Asia and China .. 128
6. “Out of Africa 1” Reconsidered and the Earliest Colonisation of Asia .. 186
7. The Climatic and Environmental Background to Hominin Settlement in Asia between ca. 1 Ma and the Last Interglacial ... 203
8. The Middle Pleistocene Archaeological Record for Southwest and Central Asia ... 259
9. The Middle Pleistocene Archaeological Record of the Indian Subcontinent .. 336
10. The Middle Pleistocene Archaeological Record of China and Southeast Asia ... 396
11. Human Evolution in Asia during the Middle Pleistocene ... 438
12. Concluding Remarks ... 473

Appendix 1: The Sizes of Countries and Regions in Asia, with Comparative Examples 479
Contents

Appendix 2: Geographical Coordinates of Principal Early Palaeolithic Sites in Asia .. 481
Appendix 3: Geographical Coordinates of Geological Sections and Cores ... 485
Appendix 4: English Names of Various Mammals Recorded in Asia ... 487

Bibliography .. 489
Index .. 541
LIST OF TABLES, FIGURES, AND BOXES

TABLES
2.1 Age, size, and weight parameters of early African hominins. page 12
2.2 Early hominin habitats in Africa between 1.5 and 4 Ma. 18
2.3 The earliest stone tools from Africa. 22
2.4 The distinctiveness of Homo ergaster relative to earlier types of hominin. 30
4.1 The origin and habitat of the Dmanisi fauna. 96
4.2 The biogeographical classification of the mammals (excluding micromammals) represented at ’Ubeidiya. 102
4.3 Sediments and depositional environments at ’Ubeidiya. 108
4.4 Details of the principal faunal and lithic layers at ’Ubeidiya. 110
4.5 The density of fossils and artefacts per cubic metre at some of the sites at ’Ubeidiya. 111
5.1 A catalogue of the principal hominin remains from Trinil and Sangiran, Java. 147
5.2 The Early Pleistocene faunal sequence in Java. 154
5.3 Hominin skeletal remains from fluvial deposits. 157
7.1 Medium and large mammals at Locality 1, Zhokoudian, China. 242
7.2 Principal mammalian taxa at Middle Pleistocene hominin sites in China (excluding Zhokoudian Locality 1). 244
7.3 Indicators of reduced temperatures and aridity in MIS 6. 255
7.4 The size and temperature regimes of Asian deserts. 257
8.1 Dates from Levantine Middle Pleistocene sites (excluding Tabun). 279
8.2 Dates from the cave of Tabun, Israel. 286
8.3 Principal features of Jabrudian assemblages. 300
8.4 Artefact types and raw materials from Yarimburgaz, Turkey. 312
8.5 Summary of the stratigraphic sequence and contents of Karain E, Main Block, Turkey. 315
8.6 Chronological correlations of Lower Palaeolithic cave sites in the Caucasus. 320
9.1 Absolute dates for the Indian Lower and early Middle Palaeolithic. 338
9.2 Ratios of handaxes to cleavers, and their importance in Acheulean assemblages from India. 342
9.3 Stratigraphic and archaeological sequence for the Soan Valley, Pakistan. 343
9.4 Artefact types from excavated units of layer 2, Chirki. 348
9.5 Artefact types from excavated units of layer 3, Chirki. 348
9.6 Frequencies of the main classes of quartzite artefacts from Rock Shelter III F-23, Bhimbetka. 356
9.7 Frequencies of main classes of nonbifacial quartzite tools in Rock Shelter III F-23, Bhimbetka. 356
9.8 Frequencies (%) of Acheulean artefacts at Minarawala Kund, Raisen District, Madhya Pradesh, India. 359
9.9 Types of Acheulean sites in the Hunsgi-Baichbal valleys. 363
9.10 Principal artefact types at Hunsgi-Baichbal sites. 366
9.11 Types of rock used for large artefacts at selected Hunsgi-Baichbal sites. 367
9.12 Geological contexts of Acheulean sites in the Hunsgi-Baichbal Valleys. 368
9.13 The stratigraphic and typological zonation of Acheulean sites of Hunsgi-Baichbal. 368
9.14 Artefacts from surface and Acheulean horizons at Hunsgi V and VI. 369
9.15 Cumulative totals of Acheulean sites in the Hunsgi and Baichbal Valleys, 1979–2005. 375
9.16 Palaeolithic assemblages from Lakhmapur West and East. 383
9.17 Types of sites, sedimentary contexts, and associated artefacts in the Kortallyar Basin, southern India. 386
9.18 Middle Palaeolithic artefact types from localities yielding >100 artefacts in the Kortallyar Basin. 387
9.19 The Acheulean assemblage from layer 6, Test-Trench T3, at Attirampakkam, Kortallyar Basin. 390
10.1 The stratigraphic sequence at Locality 1, Zhoukoudian, China. 402
10.2 Absolute dates from Locality 1, Zhoukoudian. 406
10.3 Frequencies of gnawed and tool-marked bones and teeth from Locality 1. 413
11.1 The hominin remains from Locality 1, Zhoukoudian. 440
11.2 Middle Pleistocene hominins from China, excluding Locality 1, Zhoukoudian. 442
11.3 “Archaic Homo sapiens” sites in China. 444

FIGURES
2.1 Principal fossil and archaeological sites in Africa before 1.5 Ma. 11
2.2 The fossil record of African Pliocene fossil hominins and their possible affinities and capabilities. 11
2.3 A selection of the 2.6-Ma stone tools from Kada Gona, Ethiopia. 23
3.1 The areas affected by the Indian and East Asian monsoons. 36
List of Tables, Figures, and Boxes

3.2 Summary of monsoon winter and summer circulation. 37
3.3 Present-day rainfall in Asia. 38
3.4 Tibet and surrounding areas. 39
3.5 The climatic consequences of an elevated Tibetan Plateau. 41
3.6 The sequence of uplift of the Tibetan Plateau. 43
3.7 The principal sources of evidence for the development of the climate of Asia during the late Miocene to Early Pleistocene (ca. 8–1 Ma). 44
3.8 The Loess Plateau and principal red clay and loess sections of northern China. 45
3.9 The North Chinese loess sequence of loess and palaeosols. 49
3.10 The Baoji loess section and marine oxygen isotope record of core DSDP 607. 50
3.11 Short-term Early and Middle Pleistocene climatic fluctuations in the Chinese loess profiles. 51
3.12 Summary model of monsoonal circulation in glacial and interglacial periods. 53
3.13 The loess section at Chashmanigar, Tajikistan. 55
3.14 Late Miocene vegetational changes in South Asia as detected by analyses of δ13C. 57
3.15 A summary of the main trends at Lake Baikal, 2.3–3.6 Ma, and comparison with the marine isotope record. 59
3.16 A regional overview of the tectonic and climatic changes at Lake Baikal and comparable developments in North China and the North Atlantic and Pacific Oceans. 60
3.17 Summary of changes in the North Pacific region in the late Cenozoic. 61
3.18 Late Pliocene and Pleistocene changes in the Sea of Japan. 63
3.19 Changes in the Aral Sea drainage basin in the last 4 million years. 67
3.20 The 3.2-Ma oxygen isotope record of core ODP 967, eastern Mediterranean. 69
3.21 Late Pliocene drainage of the Dead Sea Valley. 71
3.22 Late Pliocene and Early Pleistocene pollen profiles from the Dead Sea Valley. 73
3.23 Vegetational reconstruction in the Levant in arid and moist periods. 74
3.24 The stratigraphic sequence of the deposits at An Nefud, Saudi Arabia. 75
3.25 The Asian grasslands ca. 3.0 Ma. 78
3.26 “Savannahstan”: Estimated rainfall levels in Asia in moist periods of the Late Pliocene and Early Pleistocene. 79
4.1 Map of Southwest Asia and locations mentioned in the text. 85
4.2 The stratigraphic section at Dmanisi, Georgia. 87
4.3 Cranial specimens D2282 (left) and D2280 (right) from Dmanisi. 88
4.4 Cranial specimens KNM-ER 1813 (left) and D2700 (right) from Dmanisi. 89
4.5 Postcranial specimens from Dmanisi. 93
List of Tables, Figures, and Boxes

4.6 A selection of artefacts from Dmanisi. 94
4.7 The Black Sea and Caspian Sea when Dmanisi was occupied. 95
4.8 A schematic geological section of `Ubeidiya, Israel. 99
4.9 The principal lake cycles at `Ubeidiya. 101
4.10 Oldowan-type artefacts from `Ubeidiya. 104
4.11 Acheulean artefacts from `Ubeidiya. 105
4.12 The stratigraphic sequence at Kashafrud, Northeast Iran. 116
4.13 A selection of artefacts from Baghbaghu, Kashafrud. 117
4.14 The stratigraphic sequence at Evron Quarry, Israel. 119
4.15 A selection of the artefacts from Evron Quarry. 121
4.16 Early Pleistocene rivers in the Arabian Peninsula. 124
4.17 Principal Early Palaeolithic artefact scatters and sites in the Arabian Peninsula. 125
4.18 A selection of artefacts from Shuwayhittiya, Saudi Arabia. 126
5.1 Map of the Indo-Gangetic drainage system. 129
5.2 Faunal subdivisions of the Upper Siwaliks of Pakistan and India. 132
5.3 The main mammalian taxa represented in the Upper Siwaliks of the Pabbi Hills, northern Pakistan. 133
5.4 Seasonal and episodic rises in river level in the Indo-Gangetic drainage system, and the availability of stone. 135
5.5 The stratigraphy of the Soan Syncline, northern Pakistan. 137
5.6 Artefact R001 from Riwat, Soan Syncline, Pakistan. 139
5.7 The Kotha Kas area of the Pabbi Hills, Pakistan. 140
5.8 A selection of flaked stone from the Pabbi Hills. 141
5.9 Sundaland and Southeast Asia at times of low and high sea level. 146
5.10 The chronological framework from the early 1990s for the Sangiran hominins. 151
5.11 The current chronological framework for the Sangiran hominins. 156
5.12 Dubois’ stratigraphic section at Trinil showing the calotte and femur. 158
5.13 Carthaus’ stratigraphic section at Trinil. 159
5.14 Early Pleistocene archaeological localities in China. 161
5.15 A panoramic view of the Nihewan Basin. 167
5.16 Schematic lithostratigraphic section of the Nihewan Basin. 169
5.17 Artefacts from Xiaochangliang and Donggutou. 171
5.18 Palaeomagnetic section at Xiaochangliang. 173
5.19 Palaeomagnetic section at Majuangou. 175
5.20 Overview of the dating of the earliest hominin localities in China. 183
6.1 “Out of Africa 1” and the dispersal of hominins from Africa into Eurasia. 187
6.2 “Out of Asia”: An alternative scenario for the dispersal of Homo erectus. 190
6.3 The climatic consequences of Late Pliocene uplift of the Tibetan Plateau for East African climate. 191
6.4 Southwest Asia with East Africa and mainland Britain superimposed. 193
6.5 First appearance dates (FADs) and last probable absences (LPAs). 195
List of Tables, Figures, and Boxes

6.6 Koro Toro (Chad) and the potential Pliocene distribution of australopithecines ca. 3.0–3.5 Ma. 197
6.7 Discontinuities in the fossil hominin and archaeological records for Eurasia prior to ca. 0.6 Ma. 201
7.1 The change in tempo in climatic fluctuations between the Early and Middle Pleistocene in North China. 205
7.2 The onset of glaciation on the Tibetan Plateau. 207
7.3 Climatic fluctuations in the last 700,000 years on the Chinese Loess Plateau. 209
7.4 Changes in the influx of loess across the Chinese Loess Plateau between 1.1 and 0.9 Ma. 211
7.5 Short-term variations in the strength of the winter monsoon in the last 1.4 million years. 213
7.6 Estimated rainfall over the Chinese Loess Plateau over the last 125,000 years. 214
7.7 Precipitation estimates for the last 140,000 years on the Chinese Loess Plateau. 215
7.8 Vegetational changes on the Chinese Loess Plateau in the last 100,000 years. 217
7.9 Correlations of the loess sections at Chashmanigar (Tajikistan) and Lingtai (Chinese Loess Plateau) and the marine isotope record of ODP 677. 219
7.10 The deserts of Asia. 220
7.11 The climatic record of Lake Baikal, Siberia, over the last 800,000 years. 221
7.12 The estimated extent and type of vegetation on the coastal shelves of China and Southeast Asia during the last glacial maximum at 18 ka. 224
7.13 Comparisons of the pollen percentage curves of Pinus and herbaceous plants with the marine isotope record of core ODP 1144, South China Sea. 225
7.14 The oxygen isotope record of the last 500,000 years of core MD9721422, South China Sea. 229
7.15 Pollen frequencies in core SK–128A-31 from the Indian Ocean west of India. 230
7.16 Climatic indicators from core ODP 722, northwest Indian Ocean, over the past 3.2 million years. 231
7.17 The oxygen isotope record and estimated sea surface temperatures in core ODP 723, northwest Indian Ocean. 233
7.18 The stratigraphy and dating of the 16R dune in the Thar Desert, India. 237
7.19 Estimated temperature and rainfall over the last 135,000 years in the Bandung Basin, western Indonesia. 251
7.20 “Aridistan”: Estimated rainfall across Asia during the driest part of MIS 6, ca. 140 ka. 256
8.1 Map of the Levant showing principal Lower Palaeolithic sites. 261
List of Tables, Figures, and Boxes

8.2 Map of Gesher Benot Ya’aqov (GBY), Israel, and plan of excavated areas. 262
8.3 Photograph of the tilted strata at Gesher Benot Ya’aqov, level 4. 263
8.4 The geological sequence at Gesher Benot Ya’aqov. 264
8.5 An Acheulean cleaver and handaxe from Gesher Benot Ya’aqov, Layer II-6, level 4. 265
8.6 Reduction processes used at Gesher Benot Ya’aqov. 266
8.7 The flake deficit at Gesher Benot Ya’aqov. 267
8.8 Plan of the elephant skull on level II-6, Gesher Benot Ya’aqov. 269
8.9 The main archaeological horizon at Latamne, Syria. 272
8.10 Artefacts from Latamne. 273
8.11 Plan of the archaeological surface at Gharimachi 1b, Syria. 277
8.12 The “figurine” from Berekhat Ram, Israel. 283
8.13 The stratigraphic sequence at Tabun, Israel. 288
8.14 Location of principal Jabrudian sites. 289
8.15 Rust’s schematic and composite section of Shelter 1 at Jabrud, Syria. 291
8.16 Plan of the excavations by Rust and Solecki at Shelter I, Jabrud, Syria. 292
8.17 Section of the deposits at Shelter I, Jabrud, as excavated by Rust and Solecki. 293
8.18 Solecki and Solecki’s (1986) reconstruction of Rust’s (1950) cultural stratigraphy at Shelter I, Jabrud. 294
8.19 Plan of the excavations at the caves of Abri Zumoffen and Bezez, Lebanon. 295
8.20 Stratigraphic sequence of the excavations at the caves of Abri Zumoffen and Bezez. 297
8.21 A selection of Jabrudian/Amudian artefacts. 299
8.22 A comparison of different attempts to date the sequence at Tabun. 303
8.23 A schematic overview of the current dating of the Late Acheulean to Middle Palaeolithic in the Levant. 305
8.24 Location of principal Middle Pleistocene sites in Turkey and the Caucasus. 309
8.25 Stratigraphic section of Yarimburgaz Cave, Turkey. 311
8.26 Artefacts from Yarimburgaz Cave. 313
8.27 The stratigraphic sequence of Karain E, Turkey. 314
8.28 Clactonian-type tools from Karain E. 316
8.29 “Charentian” type Middle Palaeolithic tools from Karain E. 317
8.30 Levallois-Mousterian tools from Karain E, Turkey. 319
8.31 Map of Central Asia and location of main Early Palaeolithic sites. 326
8.32 Location of principal Early Palaeolithic sites and geological sections in Tajikistan. 327
8.33 Age and stratigraphic context of Early Palaeolithic sites in Tajikistan. 328
8.34 Artefacts from Kuldara, Tajikistan. 329
8.35 Bifaces from the Krasnovodsk Plateau, Central Asia. 331
9.1 Map of principal Early Palaeolithic sites in South Asia. 341
9.2 Plan of excavated area of layer 3, Trench VII, Chirki. 350
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Map of the Thar Desert, Northwest India, and location of principal Early Palaeolithic sites.</td>
</tr>
<tr>
<td>9.4</td>
<td>Early Acheulean artefacts from Singi Talav, Thar Desert.</td>
</tr>
<tr>
<td>9.5</td>
<td>Middle Palaeolithic artefacts from the 16R dune excavation, Thar Desert.</td>
</tr>
<tr>
<td>9.6</td>
<td>Stratigraphic section of Bhimbetka FIII-23.</td>
</tr>
<tr>
<td>9.7</td>
<td>Some of the Acheulean handaxes and cleavers from Bhimbetka III F-23.</td>
</tr>
<tr>
<td>9.8</td>
<td>Map of Acheulean sites in the Hunsgi-Baichbal valleys.</td>
</tr>
<tr>
<td>9.9</td>
<td>Map of Acheulean sites in the Hunsgi-Devapur area of the Hunsgi Valley.</td>
</tr>
<tr>
<td>9.10</td>
<td>Map of Acheulean sites in the Fatehpur-Yediapur area of the Baichbal Valley.</td>
</tr>
<tr>
<td>9.11</td>
<td>Map of the Acheulean workshop at Isampur, Hunsgi Valley.</td>
</tr>
<tr>
<td>9.12</td>
<td>Plan of the excavated area of the Acheulean quarry at Isampur.</td>
</tr>
<tr>
<td>9.13</td>
<td>The excavation of the Acheulean quarry at Isampur.</td>
</tr>
<tr>
<td>9.14</td>
<td>Seasonal availability of plant foods in the Hunsgi-Baichbal Valleys.</td>
</tr>
<tr>
<td>9.15</td>
<td>The surface geology of Lakhmapur.</td>
</tr>
<tr>
<td>9.16</td>
<td>Landscape relations and stratigraphy at Lakhmapur.</td>
</tr>
<tr>
<td>9.17</td>
<td>Map of the Kortallyar Basin.</td>
</tr>
<tr>
<td>9.18</td>
<td>Composite Quaternary stratigraphic sequence in the Kortallyar Basin.</td>
</tr>
<tr>
<td>9.19</td>
<td>Stratigraphic section of test trench 3, Attiramapakkam.</td>
</tr>
<tr>
<td>9.20</td>
<td>Map showing the seven major Purana basins of peninsular India.</td>
</tr>
<tr>
<td>10.1</td>
<td>Map of principal Middle Pleistocene archaeological sites in China and Southeast Asia.</td>
</tr>
<tr>
<td>10.2</td>
<td>Plan of Locality 1, Zhoukoudian.</td>
</tr>
<tr>
<td>10.3</td>
<td>Stratigraphic section of Locality 1, Zhoukoudian.</td>
</tr>
<tr>
<td>10.4</td>
<td>A selection of flaked stone from Locality 1, Zhoukoudian.</td>
</tr>
<tr>
<td>10.5</td>
<td>Stone circle at Jigongshan.</td>
</tr>
<tr>
<td>10.6</td>
<td>Bifacial artefacts from Bose.</td>
</tr>
<tr>
<td>10.7</td>
<td>The stratigraphic section at Panxian Dadong, China.</td>
</tr>
<tr>
<td>10.8</td>
<td>Stratigraphic section of Mata Menge, Flores, Indonesia.</td>
</tr>
<tr>
<td>10.9</td>
<td>A selection of artefacts from Mata Menge.</td>
</tr>
<tr>
<td>10.10</td>
<td>Ocean currents in island Southeast Asia at times of low sea-level.</td>
</tr>
<tr>
<td>11.1</td>
<td>Map of the principal Middle Pleistocene fossil hominin localities in China and Southeast Asia.</td>
</tr>
<tr>
<td>11.2</td>
<td>The stratigraphic section at Jinnuishan.</td>
</tr>
<tr>
<td>11.3</td>
<td>Plan of layer 8, level 1, at Jinnuishan.</td>
</tr>
<tr>
<td>11.4</td>
<td>The stratigraphic context of the hominin cranium at Hathnora, India.</td>
</tr>
<tr>
<td>11.5</td>
<td>The probable distribution of hominin types in Asia, Africa, and Europe during the warmest and moistest parts of MIS 11 in the Middle Pleistocene.</td>
</tr>
<tr>
<td>11.6</td>
<td>The probable distribution of hominin types in Asia, Africa, and Europe during the coldest and most arid parts of MIS 6.</td>
</tr>
<tr>
<td>12.1</td>
<td>Robert Thorne's 1527 map of Asia.</td>
</tr>
</tbody>
</table>
List of Tables, Figures, and Boxes

<table>
<thead>
<tr>
<th>Box</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hominids and hominins.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Homo ergaster and Homo erectus.</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>The Siwaliks (18 Ma–0.6 Ma).</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>Site 269.</td>
<td>142</td>
</tr>
<tr>
<td>5.3</td>
<td>Gigantopithecus.</td>
<td>179</td>
</tr>
<tr>
<td>10.1</td>
<td>The Great Australasian Tektite-Strewn Field.</td>
<td>421</td>
</tr>
</tbody>
</table>
PREFACE

In this book, I have tried to summarise and integrate the archaeological, fossil hominin, and climatic records of Asia before it was colonised by modern humans ca. 100 ka. I first thought about writing this book ten to fifteen years ago, but had to delay the attempt until I had published the results of the fieldwork I had directed in the Pabbi Hills, Pakistan (Dennell 2004a), and also until I had escaped the burdens of departmental administration. There are several reasons that I have long wanted to write a synthesis of Asia’s early prehistory. The first is that (surprisingly) no one has ever written one, despite the fact that Asia, as the largest continent, was where a substantial part of early human prehistory took place in the last two million years, and it thus deserves to be treated in its own right as much as that of Europe or Africa. Second, and as a result of this neglect, most accounts of early human prehistory are biased towards evidence from Europe and Africa, with often only brief mention of what is known from Asia. One unfortunate result of this bias is the prominence that is usually ascribed to European evidence. Europe is little more than the western peninsula of Asia, and was often a very small tail wagged by a much larger dog. Much of what happened to hominins (and the rest of the fauna) in Europe in the Middle Pleistocene was an extension of climatic and faunal developments further east, and better understanding of these would probably benefit perceptions of Europe’s own early prehistory. A third reason behind this book is that, within Asia, there are several researchers who know an immense amount about their own regions, but far less about neighbouring ones. This is entirely understandable given the size and diversity of the continent, but it has inhibited attempts to see Asia’s prehistory at a continental as well as a regional level. The climatic data now available (especially from the last decade) make this not only possible, but positively exciting in terms of how regional records for early hominins reflect large-scale changes in Asia’s climate (and often topography) over the last two million years or more.

A driving influence behind this book has been the wish to combine the details of local regional records with a continental perspective – to see both the
individual trees and the overall forest in which they are found. Although much of the book is necessarily about regional archaeological records, particularly for the Levant (Chapters 4 and 8), India (Chapter 9), Southeast Asia (Chapters 5 and 8), and North China (Chapters 5 and 10), I have tried also to assess these in relation to what is known about Asia’s climatic record before the last interglacial (Chapters 3 and 7). There is now an immense literature on the history of Asia’s climate, particularly the monsoon, and this deserves to be as well known as the European record of glaciations and interglacials. The fossil evidence for hominin evolution in Asia is often very poor, and has often been synthesised entirely as a self-contained set of material, and without any attempt to place it in an environmental and climatic context. As I hope I show in Chapters 6 and especially 11, there is much to be gained by studying the Asian fossil hominin record at a continental level in relation to its climatic and environmental context.

In writing this book, I have tried to rely upon primary sources as much as possible. Because the literature on the early prehistory of Asia (including its climatic and fossil hominin record) is so diverse and scattered, the book includes an extensive bibliography that I hope will be useful to those wishing to proceed further. It is not exhaustive, but I hope it provides a reasonable selection of current evidence. As is evident from the bibliography, the sources used are overwhelmingly in English, although I have used French, German, and Russian ones when appropriate. The main omission is unfortunately the enormous amount of material published in Chinese that I cannot (yet) read. In finishing this book, I am aware that I am in the position of someone leaving a large party in full swing: some conversations are routine, some may even be tedious, but others are highly animated and unpredictable. In such a position, all one can do is to summarise and evaluate the current situation, even though some aspects may have changed by the time the book is published. In a large, diverse, and active field, this is normal, so readers should expect parts of this book to age rapidly; I hope that the greater part will do so gradually.

One detail that should be clarified at this point in order to circumvent accusations of geographical inexactitude concerns my definition of Asia. “Asia”, like “Africa” and “Europe”, is a construct of classical and postclassical Western thought, and its boundaries reflect shifting cultural, political, and historical perceptions. In the Roman Empire, “Africa” denoted Roman territories on the southern side of the Mediterranean (apart from Egypt, which was seen as unique), whereas “Asia” referred to territories on and beyond the eastern Mediterranean. In the sixteenth century, Europeans tended to expand the term “Asia” to include all areas east of the Mediterranean, and later, east of the Ural. The edges of Asia are blurred, especially for those interested in the Pleistocene or recent history. In the mid-nineteenth century, the English writer Kinglake regarded Belgrade, Serbia, as the European frontier with Asia because the Balkans were then under “Asiatic” Ottoman rule. Because of various wars
before 1914, the Balkans became European, as might Turkey if it becomes part of the European Union. The Caucasus region between the Black and Caspian Seas is another region where geography, history, and religion have resulted in a contested identity – European, Asian, neither, or both.

Asia appears sharply demarcated from Alaska by the Bering Strait, yet they were united for much of the Pleistocene, at times of low sea level, by the coastal shelf of Beringia. Likewise, Australia seems neatly divided from Southeast Asia, but its faunal and floral boundaries were blurred when the Sunda and Sahul Shelves were exposed when sea levels dropped. My approach is unexceptional and heuristic: Istanbul for me remains the gateway to Asia from Europe; the southern Caucasus is included in Asia because it would make no sense to exclude Dmanisi and the cave sequences of this region from a discussion of Asian prehistory; Flores remains the southeast endpoint of Asia regarding early hominins; and Beringia is irrelevant to this book, as hominins prior to the last interglacial never reached it.

There are many who need to be thanked for their support over the last three years. First and foremost are the British Academy, who generously granted me a three-year research professorship so that I could concentrate upon writing this book, and the anonymous referees of my application for that award, who were so supportive in their comments. Without the freedom to concentrate without the extraneous distractions of day-to-day departmental life, I would never have had the quality time and mental space to focus so wholeheartedly on a book of this scale. Next to thank are a small number of individuals for their generosity in sharing with me their much greater knowledge as specialists, and especially for reading and discussing advanced drafts of individual chapters. First, my Sheffield colleagues Professor Andrew Chamberlain and Dr. Kevin Kuykendall, for their comments on the African early fossil hominin record (Chapter 2); Professor Phil Gibbard of the Godwin Laboratory of Quaternary Research, Cambridge, for discussing the two chapters (3 and 7) on the Pliocene to Middle Pleistocene climatic and environmental records of Asia; Professor Namma Goren-Inbar of the Institute of Archaeology, Jerusalem, for commenting on the two chapters (4 and 8) on the Early and Middle Pleistocene records of Southwest Asia, and particularly the Levant; Dr. Mike Petraglia of the Leverhulme Centre for Human Evolutionary Studies (LCHES), Cambridge, for long discussions on the Early Palaeolithic of India and for commenting in

1 As one crosses the Bosphorus at Istanbul, there is (or used to be) a signpost pointing one way to Europe (i.e., Istanbul) and the other way to Asia; I see no reason to disagree with this geographical boundary. Nevertheless, I discuss in Chapter 8 the evidence from Yarmıburgaz, on the European side of the Bosphorus, as it is one of the few excavated Early Palaeolithic sites in Turkey.

2 As example of the ambiguous status of this region, all these sites are discussed in the volume on the Early Palaeolithic of Europe, edited by Roebroeks and Kolfschoten (1995).
depth on Chapter 9; Professors Huang Weiwen and Gao Xing of the Institute of Vertebrate Palaeontology and Palaeoanthropology (IVPP), Beijing, for sharing their knowledge of the Early Palaeolithic of China (Chapters 5 and 10); and Professor Bermúdez de Castro and Dr. Martínón-Torres (Centro Nacional de Investigación sobre Evolución Humana [CENIEH] Burgos) for their comments and advice on Chapter 11, which considers the Middle Pleistocene fossil hominin record of Asia and its neighbours. I also owe much to the friendship of Professor Wil Roebroeks of the Faculty of Archaeology, Leiden, especially for his support in developing some of the ideas in Chapter 6 that underpinned our joint review paper in *Nature* (2005), and for his invitation to give a series of postgraduate seminars in Leiden on the first half of the book in 2006. Dr. Paul Pettitt read and commented upon advanced drafts of the entire text and has been faultless as a departmental colleague, critic, sounding board, and friend throughout this project, and Norman Yoffee and Tom Dillehay provided useful suggestions on amendments and additions to the final script. Needless to say, I have only myself to blame for any shortcomings and errors that have accrued. Many others are thanked for advice on specific topics: Dr. Ian Boomer (Department of Geography, Newcastle) on the history of the Aral Sea; Dr. Deborah Bekken (Field Museum, Chicago) on the Chinese Pleistocene faunal record; Dr. Sabine Gaudzinski (Forschungsbereich Altsteinzeit, Neuwied) and John Sheá (Stony Brook University) on the 'Ubeidiya fauna; Professors Bienvenudo Martínez-Navarro (Tarragona) and Alan Turner (Liverpool John Moore’s University) on vertebrate palaeontology; Drs. Jon de Vos and Paul Storm (Naturalis Museum, Leiden) on the dating of the Ngandong fauna; and Dr. Marianne Sommer (Zurich) for enhancing my understanding of palaeoanthropology’s development. On a more general level, I have profited enormously from being part of a wider community of palaeoanthropologists and Pleistocene specialists. In addition to those thanked above, I would like to thank the following (in no particular order) for their genial and stimulating company at various conferences and workshops: Rob Foley and Martha Lahr and the postgraduates at LCHES, Richard Leakey, Kenneth Kennedy, Mark Moore, Mike Morwood, Russell Ciochon, Jeff Schwartz, Zhang Yue, Phillip Rightmire, Chris Stringer, Jose Joordens, Marco Langbroek, Georgio Manzi, Eudald Carbonell, Ric Potts, David Lordkipanidze, Peter Underhill, Mike Parker-Pearson, Steve Lycett, Noreen von Cramon-Taubadel, Susan Antón, Mary Stiner, and my former Ph.D. students Parth Chauhan and Kathryn Holmes. Additionally, for their invitations to participate in various workshops and conferences (and often for enabling me to do so), I thank Professor Thjis van Kolshoten (Marine Isotope Stage 11 Workshop, Leiden, 2000); Sari Miller-Antiono and Lynn Schepart (Workshop on the Asian Middle Pleistocene, Honolulu, 2001); Andrei Dodonov (INQUA Loess Workshop, Moscow, 2003); Iain Davidson (Australian Archaeological Association Meeting in Armidale, 2004); Professors John Fleagle and John Shea (Workshop on Early Asian Prehistory, Stony Brook,
Preface

2005; Dr. Clive Finlayson (Early Hominin Dispersals Conference, Gibraltar, 2006); Rob Foley and Martha Lahr (Opening of the LCHES, Cambridge, and associated workshop, 2006); Dr. Chris Norton (IVPP; AAPA meeting, Philadelphia, 2007; and for commenting on parts of Chapters 7 and 10); and all those in the Atapuerca team (Workshop on Middle Pleistocene Hominin Evolution in Eurasia, Burgos, 2007). Finally, I thank my wife, Dr. Linda Hurcombe (Department of Archaeology, Exeter), for her support and shared experience over the years, and especially for knowing what it entails to be obsessive, to write a book, and to be a head of department; and I thank our son Patrick, now aged four, for tolerating my frequent absences, for diverting my preoccupation with Asian prehistory, and for making life so much richer, if often more tiring.

The production of this book was made immeasurably easier by Polly Billam, who took care of most of the requests for copyright permission to reproduce many of the figures, compiled the list of index terms, cross-checked all references, and pointed out my numerous typographic errors. Shane Earles (departmental technician) did an exemplary job in scanning the figures, and the Document Supply Service in the University Library, Sheffield, is also thanked for dealing with my many and usually obscure requests.

A brief note on the spelling of names is appropriate. In some instances, sites and people are known by different spellings (for example, Dmanisi, Dmanissi; Gabunia, Gabounia; Tien Shan, Tianshan), and I have tried to standardise these. I have listed Chinese names in full in the bibliography wherever possible, and as they appeared in lists of authors. Because the Chinese place the family name before the given one, there is much confusion over which is which in many journal publications; for example, Gao Xing can be listed as Xing Gao, Gao X., or Xing G. Apologies to any Chinese colleagues whose names have appeared incorrectly. Regarding acknowledgements to those figures and tables that have been reproduced, in a few instances it proved impossible to trace the owners of copyright material, and thus I take this opportunity to offer my apologies to any copyright holders whose rights I may have unwittingly infringed.

Sheffield and Topsham, December 2007