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Introduction to Multiphase Flow

1.1 Introduction

1.1.1 Scope

In the context of this book, the term multiphase flow is used to refer to any fluid flow
consisting of more than one phase or component. For brevity and because they are
covered in other texts, we exclude those circumstances in which the components are
well mixed above the molecular level. Consequently, the flows considered here have
some level of phase or component separation at a scale well above the molecular
level. This still leaves an enormous spectrum of different multiphase flows. One could
classify them according to the state of the different phases or components and therefore
refer to gas/solids flows or liquid/solids flows or gas/particle flows or bubbly flows and
so on; many texts exist that limit their attention in this way. Some treatises are defined
in terms of a specific type of fluid flow and deal with low-Reynolds-number suspension
flows, dusty gas dynamics, and so on. Others focus attention on a specific application
such as slurry flows, cavitating flows, aerosols, debris flows, fluidized beds, and so
on; again, there are many such texts. In this book we attempt to identify the basic
fluid mechanical phenomena and to illustrate those phenomena with examples from a
broad range of applications and types of flow.

Parenthetically, it is valuable to reflect on the diverse and ubiquitous challenges of
multiphase flow. Virtually every processing technology must deal with multiphase flow,
from cavitating pumps and turbines to electrophotographic processes to papermaking
to the pellet form of almost all raw plastics. The amount of granular material, coal,
grain, ore, and so on that is transported every year is enormous and, at many stages,
that material is required to flow. Clearly the ability to predict the fluid flow behavior
of these processes is central to the efficiency and effectiveness of those processes.
For example, the effective flow of toner is a major factor in the quality and speed of
electrophotographic printers. Multiphase flows are also a ubiquitous feature of our
environment whether one considers rain, snow, fog, avalanches, mud slides, sediment
transport, debris flows, and countless other natural phenomena, to say nothing of
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2 Introduction to Multiphase Flow

what happens beyond our planet. Very critical biological and medical flows are also
multiphase, from blood flow to semen to the bends to lithotripsy to laser surgery
cavitation and so on. No single list can adequately illustrate the diversity and ubiquity;
consequently, any attempt at a comprehensive treatment of multiphase flows is flawed
unless it focuses on common phenomenological themes and avoids the temptation to
digress into lists of observations.

Two general topologies of multiphase flow can be usefully identified at the outset,
namely disperse flows and separated flows. By disperse flows we mean those consisting
of finite particles, drops, or bubbles (the disperse phase) distributed in a connected
volume of the continuous phase. Separated flows consist of two or more continuous
streams of different fluids separated by interfaces.

1.1.2 Multiphase Flow Models

A persistent theme throughout the study of multiphase flows is the need to model and
predict the detailed behavior of those flows and the phenomena that they manifest.
There are three ways in which such models are explored: (1) experimentally, through
laboratory-sized models equipped with appropriate instrumentation; (2) theoretically,
using mathematical equations and models for the flow; and (3) computationally, using
the power and size of modern computers to address the complexity of the flow. Clearly
there are some applications in which full-scale laboratory models are possible. But, in
many instances, the laboratory model must have a very different scale from the proto-
type and then a reliable theoretical or computational model is essential for confident
extrapolation to the scale of the prototype. There are also cases in which a laboratory
model is impossible for a wide variety of reasons.

Consequently, the predictive capability and physical understanding must rely heav-
ily on theoretical and/or computational models and here the complexity of most mul-
tiphase flows presents a major hurdle. It may be possible at some distant time in the
future to code the Navier–Stokes equations for each of the phases or components and
to compute every detail of a multiphase flow, the motion of all the fluid around and
inside every particle or drop, the position of every interface. But the computer power
and speed required to do this are far beyond present capability for most of the flows
that are commonly experienced. When one or both of the phases become turbulent (as
often happens), the magnitude of the challenge becomes truly astronomical. Therefore,
simplifications are essential in realistic models of most multiphase flows.

In disperse flows two types of models are prevalent, trajectory models and two-fluid
models. In trajectory models, the motion of the disperse phase is assessed by following
the motion of either the actual particles or larger, representative particles. The details of
the flow around each of the particles are subsumed into assumed drag, lift, and moment
forces acting on and altering the trajectory of those particles. The thermal history of
the particles can also be tracked if it is appropriate to do so. Trajectory models have
been very useful in studies of the rheology of granular flows (see Chapter 13) primarily

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521848040 - Fundamentals of Multiphase Flow
Christopher E. Brennen
Excerpt
More information

http://www.cambridge.org/0521848040
http://www.cambridge.org
http://www.cambridge.org


1.1 Introduction 3

because the effects of the interstitial fluid are small. In the alternative approach, two-
fluid models, the disperse phase is treated as a second continuous phase intermingled
and interacting with the continuous phase. Effective conservation equations (of mass,
momentum, and energy) are developed for the two fluid flows; these include interaction
terms modeling the exchange of mass, momentum, and energy between the two flows.
These equations are then solved either theoretically or computationally. Thus, two-fluid
models neglect the discrete nature of the disperse phase and approximate its effects on
the continuous phase. Inherent in this approach are averaging processes necessary to
characterize the properties of the disperse phase; these involve significant difficulties.
The boundary conditions appropriate in two-fluid models also pose difficult modeling
issues.

In contrast, separated flows present many fewer issues. In theory one must solve the
single-phase fluid-flow equations in the two streams, coupling them through appro-
priate kinematic and dynamic conditions at the interface. Free streamline theory (see,
for example, Birkhoff and Zarantonello 1957, Tulin 1964, Woods 1961, Wu 1972) is
an example of a successful implementation of such a strategy, though the interface
conditions used in that context are particularly simple.

In the first part of this book, the basic tools for both trajectory and two-fluid models
are developed and discussed. In the remainder of this first chapter, a basic notation for
multiphase flow is developed and this leads naturally into a description of the mass,
momentum, and energy equations applicable to multiphase flows and, particularly in
two-fluid models. In Chapters 2, 3, and 4, we examine the dynamics of individual
particles, drops, and bubbles. In Chapter 7 we address the different topologies of
multiphase flows and, in the subsequent chapters, we examine phenomena in which
particle interactions and the particle/fluid interactions modify the flow.

1.1.3 Multiphase Flow Notation

The notation that is used is close to the standard described by Wallis (1969). It has,
however, been slightly modified to permit more ready adoption to the Cartesian tensor
form. In particular the subscripts that can be attached to a property consist of a group
of uppercase subscripts followed by lowercase subscripts. The lowercase subscripts
(i, ij, etc.) are used in the conventional manner to denote vector or tensor components. A
single uppercase subscript (N) refers to the property of a specific phase or component.
In some contexts generic subscripts N = A, B are used for generality. However, other
letters such as N = C (continuous phase), N = D (disperse phase), N = L (liquid),
N = G (gas), N = V (vapor), or N = S (solid) are used for clarity in other contexts.
Finally two uppercase subscripts imply the difference between the two properties for
the two single uppercase subscripts.

Specific properties frequently used are as follows. Volumetric fluxes (volume flow
per unit area) of individual components are denoted by jAi , jBi (i = 1, 2, or 3 in
three-dimensional flow). These are sometimes referred to as superficial component
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4 Introduction to Multiphase Flow

velocities. The total volumetric flux, ji , is then given by the following:

ji = jAi + jBi + · · · =
∑

N

jNi . (1.1)

Mass fluxes are similarly denoted by GAi , GBi , or Gi . Thus if the densities of individual
components are denoted by ρA, ρB it follows that

GAi = ρA jAi ; GBi = ρB jBi ; Gi =
∑

N

ρN jNi . (1.2)

Velocities of the specific phases are denoted by uAi , uBi or, in general, by uNi . The
relative velocity between the two phases A and B is denoted by uABi such that

uAi − uBi = uABi . (1.3)

The volume fraction of a component or phase is denoted by αN and, in the case of two
components or phases, A and B, it follows that αB = 1 − αA. Though this is clearly
a well-defined property for any finite volume in the flow, there are some substantial
problems associated with assigning a value to an infinitesimal volume or point in the
flow. Provided these can be resolved, it follows that the volumetric flux of a component,
N , and its velocity are related by

jNi = αNuNi (1.4)

and that

ji = αAuAi + αBuBi + · · · =
∑

N

αNuNi . (1.5)

Two other fractional properties are relevant only in the context of one-dimensional
flows. The volumetric quality, βN, is the ratio of the volumetric flux of the component,
N, to the total volumetric flux, that is,

βN = jN/j, (1.6)

where the index i has been dropped from jN and j because β is only used in the context
of one-dimensional flows and the jN, j refer to cross-sectionally averaged quantities.

The mass fraction, xA, of a phase or component, A, is simply given by ρAαA/ρ

[see Eq. (1.8) for ρ]. Conversely, the mass quality, XA, is often referred to simply as
the quality and is the ratio of the mass flux of component A to the total mass flux or

XA = GA

G
= ρA jA∑

N
ρN jN

. (1.7)

Furthermore, when only two components or phases are present it is often redundant
to use subscripts on the volume fraction and the qualities because αA = 1 − αB, βA =
1 − βB, and XA = 1 − XB. Thus unsubscripted quantities α, β, and X are often used
in these circumstances.
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1.1 Introduction 5

It is clear that a multiphase mixture has certain mixture properties, of which the
most readily evaluated is the mixture density denoted by ρ and given by the following:

ρ =
∑

N

αNρN. (1.8)

Conversely, the specific enthalpy, h, and specific entropy, s, being defined as per unit
mass rather than per unit volume, are weighted according to the following:

ρh =
∑

N

ρNαNhN; ρs =
∑

N

ρNαNsN. (1.9)

Other properties such as the mixture viscosity or thermal conductivity cannot be
reliably obtained from such simple weighted means.

Aside from the relative velocities between phases that were described earlier, there
are two other measures of relative motion that are frequently used. The drift velocity
of a component is defined as the velocity of that component in a frame of reference
moving at a velocity equal to the total volumetric flux, ji , and is therefore given by
uNJi , where

uNJi = uNi − ji . (1.10)

Even more frequent use will be made of the drift flux of a component, which is defined
as the volumetric flux of a component in the frame of reference moving at ji . Denoted
by jNJi , this is given by the following:

jNJi = jNi − αNji = αN(uNi − ji ) = αNuNJi . (1.11)

It is particularly important to notice that the sum of all the drift fluxes must be zero
because from Eq. (1.11) we have the following:∑

N

jNJi =
∑

N

jNi − ji
∑

N

αN = ji − ji = 0. (1.12)

When only two phases or components, A and B, are present it follows that jAJi = − jBJi

and hence it is convenient to denote both of these drift fluxes by the vector jABi , where
we have the following:

jABi = jAJi = − jBJi . (1.13)

Moreover it follows from Eq. (1.11) that we have the following:

jABi = αAαBuABi = αA(1 − αA)uABi , (1.14)

and hence the drift flux, jABi , and the relative velocity, uABi , are simply related.
Finally, it is clear that certain basic relations follow from the preceding definitions

and it is convenient to identify these here for later use. First the relations between the
volume and mass qualities that follow from Eqs. (1.6) and (1.7) only involve ratios of
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6 Introduction to Multiphase Flow

Figure 1.1. Measured size distribution functions
for small bubbles in three different water tunnels
(Peterson et al. 1975, Gates and Bacon 1978, Katz
1978) and in the ocean off Los Angeles, California
(O’Hern et al. 1985).

the densities of the following components:

XA = βA/
∑

N

(
ρN

ρA

)
βN; βA = XA/

∑
N

(
ρA

ρN

)
XN. (1.15)

Conversely, the relation between the volume fraction and the volume quality necessar-
ily involves some measure of the relative motion between the phases (or components).
The following useful results for two-phase (or two-component) one-dimensional flows
can readily be obtained from Eqs. (1.11) and (1.6) as follows:

βN = αN + jNJ

j
; βA = αA + jAB

j
; βB = αB − jAB

j
, (1.16)

which demonstrate the importance of the drift flux as a measure of the relative motion.

1.1.4 Size Distribution Functions

In many multiphase flow contexts we shall make the simplifying assumption that all
the disperse phase particles (bubbles, droplets, or solid particles) have the same size.
However, in many natural and technological processes it is necessary to consider the
distribution of particle size. One fundamental measure of this is the size distribution
function, N (v), defined such that the number of particles in a unit volume of the
multiphase mixture with volume between v and v + dv is N (v)dv. For convenience,

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521848040 - Fundamentals of Multiphase Flow
Christopher E. Brennen
Excerpt
More information

http://www.cambridge.org/0521848040
http://www.cambridge.org
http://www.cambridge.org


1.1 Introduction 7

Figure 1.2. Size distribution functions
for bubbles in freshly poured Guinness
and after five minutes. Adapted from
Kawaguchi and Maeda (2003).

it is often assumed that the particle size can be represented by a single linear dimension
(for example, the diameter, D, or radius, R, in the case of spherical particles) so that
alternative size distribution functions, N ′(D) or N ′′(R), may be used. Examples of
size distribution functions based on radius are shown in Figures 1.1 and 1.2.

Often such information is presented in the form of cumulative number distributions.
For example, the cumulative distribution, N ∗(v∗), defined as

N ∗(v∗) =
∫ v∗

0
N (v)dv, (1.17)

is the total number of particles of volume less than v∗. Examples of cumulative dis-
tributions (in this case for coal slurries) are shown in Figure 1.3.

In these disperse flows, the evaluation of global quantities or characteristics of the
disperse phase will clearly require integration over the full range of particle sizes using
the size distribution function. For example, the volume fraction of the disperse phase,

Figure 1.3. Cumulative size distribu-
tions for various coal slurries. Adapted
from Shook and Roco (1991).
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8 Introduction to Multiphase Flow

αD, is given by the following:

αD =
∫ ∞

0
vN (v)dv = π

6

∫ ∞

0
D3 N ′(D)d D, (1.18)

where the last expression clearly applies to spherical particles. Other properties of the
disperse phase or of the interactions between the disperse and continuous phases can
involve other moments of the size distribution function (see, for example, Friedlander
1977). This leads to a series of mean diameters (or sizes in the case of nonspherical
particles) of the form, Djk, where

Djk =
[∫ ∞

0 D j N ′(D)d D∫ ∞
0 Dk N ′(D)d D

] 1
j−k

. (1.19)

A commonly used example is the mass mean diameter, D30. Conversely, processes
that are controlled by particle surface area would be characterized by the surface
area mean diameter, D20. The surface area mean diameter would be important, for
example, in determining the exchange of heat between the phases or the rates of
chemical interaction at the disperse phase surface. Another measure of the average
size that proves useful in characterizing many disperse particulates is the Sauter mean
diameter, D32. This is a measure of the ratio of the particle volume to the particle
surface area and, as such, is often used in characterizing particulates (see, for example,
Chapter 14).

1.2 Equations of Motion

1.2.1 Averaging

In Section 1.1.3 it was implicitly assumed that there existed an infinitesimal volume
of dimension, ε, such that ε was not only very much smaller than the typical distance
over which the flow properties varied significantly but also very much larger than the
size of the individual phase elements (the disperse phase particles, drops, or bubbles).
The first condition is necessary to define derivatives of the flow properties within the
flow field. The second is necessary so that each averaging volume (of volume ε3)
contains representative samples of each of the components or phases. In the sections
that follow (Sections 1.2.2 to 1.2.9), we proceed to develop the effective differential
equations of motion for multiphase flow assuming that these conditions hold.

However, one of the more difficult hurdles in treating multiphase flows is that the
preceding two conditions are rarely both satisfied. As a consequence the averaging
volumes contain a finite number of finite-sized particles and therefore flow properties
such as the continuous phase velocity vary significantly from point to point within these
averaging volumes. These variations pose the challenge of how to define appropriate
average quantities in the averaging volume. Moreover, the gradients of those averaged
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1.2 Equations of Motion 9

flow properties appear in the equations of motion that follow and the mean of the
gradient is not necessarily equal to the gradient of the mean. These difficulties are
addressed in Section 1.4 after we have explored the basic structure of the Equations
in the absence of such complications.

1.2.2 Continuum Equations for Conservation of Mass

Consider now the construction of the effective differential equations of motion for a
disperse multiphase flow (such as might be used in a two-fluid model) assuming that
an appropriate elemental volume can be identified. For convenience this elemental
volume is chosen to be a unit cube with edges parallel to the x1, x2, x3 directions. The
mass flow of component N through one of the faces perpendicular to the i direction is
given by ρN jNi and therefore the net outflow of mass of component N from the cube
is given by the divergence of ρN jNi or

∂(ρN jNi )

∂xi
. (1.20)

The rate of increase of the mass of component N stored in the elemental volume is
∂(ρNαN)/∂t and hence conservation of mass of component N requires that

∂

∂t
(ρNαN) + ∂(ρN jNi )

∂xi
= IN, (1.21)

where IN is the rate of transfer of mass to the phase N from the other phases per
unit total volume. Such mass exchange would result from a phase change or chemical
reaction. This is the first of several phase interaction terms that are identified and, for
ease of reference, the quantities IN are termed the mass interaction terms.

Clearly there is a continuity equation such as Eq. (1.21) for each phase or com-
ponent present in the flow. They are referred to as the individual phase continuity
equations (IPCE). However, because mass as a whole must be conserved whatever
phase changes or chemical reactions are happening, it follows that∑

N

IN = 0 (1.22)

and hence the sum of all the IPCEs results in a combined phase continuity equation
(CPCE) that does not involve IN as follows:

∂

∂t

(∑
N

ρNαN

)
+ ∂

∂xi

(∑
N

ρN jNi

)
= 0 (1.23)

or, using Eqs. (1.4) and (1.8),

∂ρ

∂t
+ ∂

∂xi

(∑
N

ρNαNuNi

)
= 0. (1.24)
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10 Introduction to Multiphase Flow

Notice that only under the conditions of zero relative velocity in which uNi = ui does
this reduce to the mixture continuity equation (MCE), which is identical to that for an
equivalent single-phase flow of density ρ as follows:

∂ρ

∂t
+ ∂

∂xi
(ρui ) = 0. (1.25)

We also record that for one-dimensional duct flow the individual phase continuity
equation [Eq. (1.21)] becomes the following:

∂

∂t
(ρNαN) + 1

A

∂

∂x
(AρNαNuN) = IN, (1.26)

where x is measured along the duct; A(x) is the cross-sectional area; uN, αN are cross-
sectionally averaged quantities, and AIN is the rate of transfer of mass to the phase
N per unit length of the duct. The sum over the constituents yields the following
combined phase continuity equation

∂p

∂t
+ 1

A

∂

∂x

(
A

∑
N

ρNαNun

)
= 0. (1.27)

When all the phases travel at the same speed, uN = u, this reduces to the following:

∂ρ

∂t
+ 1

A

∂

∂x
(ρ Au) = 0. (1.28)

Finally, we should make note of the form of the equations when the two components
or species are intermingled rather than separated because we analyze several situations
with gases diffusing through one another. Then both components occupy the entire
volume and the void fractions are effectively unity so that the continuity equation
[Eq. (1.21)] becomes the following:

∂ρN

∂t
+ ∂(ρNuNi )

∂xi
= IN. (1.29)

1.2.3 Disperse Phase Number Continuity

Complementary to the equations of conservation of mass are the equations governing
the conservation of the number of bubbles, drops, particles, and so on that constitute
a disperse phase. If no such particles are created or destroyed within the elemental
volume and if the number of particles of the disperse component, D, per unit total
volume is denoted by nD, it follows that

∂nD

∂t
+ ∂

∂xi
(nDuDi ) = 0. (1.30)

This is referred to as the disperse phase number equation (DPNE).
If the volume of the particles of component D is denoted by vD it follows that

αD = nDvD (1.31)
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