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Introduction

The experimental realization in 1995 of Bose–Einstein condensation in di-
lute atomic gases marked the beginning of a very rapid development in the
study of quantum gases. The initial experiments were performed on vapours
of rubidium [1], sodium [2], and lithium [3].1 So far, the atoms 1H, 7Li, 23Na,
39K, 41K, 52Cr, 85Rb, 87Rb, 133Cs, 170Yb, 174Yb and 4He* (the helium atom
in an excited state) have been demonstrated to undergo Bose–Einstein con-
densation. In related developments, atomic Fermi gases have been cooled to
well below the degeneracy temperature, and a superfluid state with corre-
lated pairs of fermions has been observed. Also molecules consisting of pairs
of fermionic atoms such as 6Li or 40K have been observed to undergo Bose–
Einstein condensation. Atoms have been put into optical lattices, thereby
allowing the study of many-body systems that are realizations of models
used in condensed matter physics. Although the gases are very dilute, the
atoms can be made to interact strongly, thus providing new challenges for
the description of strongly correlated many-body systems. In a period of
less than ten years the study of dilute quantum gases has changed from an
esoteric topic to an integral part of contemporary physics, with strong ties
to molecular, atomic, subatomic and condensed matter physics.

The dilute quantum gases differ from ordinary gases, liquids and solids
in a number of ways, as we shall now illustrate by giving values of physi-
cal quantities. The particle density at the centre of a Bose–Einstein con-
densed atomic cloud is typically 1013–1015 cm−3. By contrast, the density
of molecules in air at room temperature and atmospheric pressure is about
1019 cm−3. In liquids and solids the density of atoms is of order 1022 cm−3,
while the density of nucleons in atomic nuclei is about 1038 cm−3.

To observe quantum phenomena in such low-density systems, the tem-

1 Numbers in square brackets are references, to be found at the end of each chapter.
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2 Introduction

perature must be of order 10−5 K or less. This may be contrasted with
the temperatures at which quantum phenomena occur in solids and liquids.
In solids, quantum effects become strong for electrons in metals below the
Fermi temperature, which is typically 104–105 K, and for phonons below
the Debye temperature, which is typically of order 102 K. For the helium
liquids, the temperatures required for observing quantum phenomena are of
order 1 K. Due to the much higher particle density in atomic nuclei, the
corresponding degeneracy temperature is about 1011 K.

The path that led in 1995 to the first realization of Bose–Einstein conden-
sation in dilute gases exploited the powerful methods developed since the
mid 1970s for cooling alkali metal atoms by using lasers. Since laser cool-
ing alone did not produce sufficiently high densities and low temperatures
for condensation, it was followed by an evaporative cooling stage, in which
the more energetic atoms were removed from the trap, thereby cooling the
remaining atoms.

Cold gas clouds have many advantages for investigations of quantum phe-
nomena. In a weakly interacting Bose–Einstein condensate, essentially all
atoms occupy the same quantum state, and the condensate may be described
in terms of a mean-field theory similar to the Hartree–Fock theory for atoms.
This is in marked contrast to liquid 4He, for which a mean-field approach
is inapplicable due to the strong correlations induced by the interaction
between the atoms. Although the gases are dilute, interactions play an im-
portant role as a consequence of the low temperatures, and they give rise to
collective phenomena related to those observed in solids, quantum liquids,
and nuclei. Experimentally the systems are attractive ones to work with,
since they may be manipulated by the use of lasers and magnetic fields. In
addition, interactions between atoms may be varied either by using different
atomic species or, for species that have a Feshbach resonance, by changing
the strength of an applied magnetic or electric field. A further advantage is
that, because of the low density, ‘microscopic’ length scales are so large that
the structure of the condensate wave function may be investigated directly
by optical means. Finally, these systems are ideal for studies of interference
phenomena and atom optics.

The theoretical prediction of Bose–Einstein condensation dates back more
than 80 years. Following the work of Bose on the statistics of photons [4],
Einstein considered a gas of non-interacting, massive bosons, and concluded
that, below a certain temperature, a non-zero fraction of the total number
of particles would occupy the lowest-energy single-particle state [5]. In 1938
Fritz London suggested the connection between the superfluidity of liquid
4He and Bose–Einstein condensation [6]. Superfluid liquid 4He is the pro-
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Introduction 3

totype Bose–Einstein condensate, and it has played a unique role in the
development of physical concepts. However, the interaction between helium
atoms is strong, and this reduces the number of atoms in the zero-momentum
state even at absolute zero. Consequently it is difficult to measure directly
the occupancy of the zero-momentum state. It has been investigated ex-
perimentally by neutron scattering measurements of the structure factor at
large momentum transfers [7], and the results are consistent with a relative
occupation of the zero-momentum state of about 0.1 at saturated vapour
pressure and about 0.05 near the melting pressure [8].

The fact that interactions in liquid helium reduce dramatically the oc-
cupancy of the lowest single-particle state led to the search for weakly in-
teracting Bose gases with a higher condensate fraction. The difficulty with
most substances is that at low temperatures they do not remain gaseous,
but form solids or, in the case of the helium isotopes, liquids, and the effects
of interaction thus become large. In other examples atoms first combine
to form molecules, which subsequently solidify. As long ago as in 1959
Hecht [9] argued that spin-polarized hydrogen would be a good candidate
for a weakly interacting Bose gas. The attractive interaction between two
hydrogen atoms with their electronic spins aligned was then estimated to
be so weak that there would be no bound state. Thus a gas of hydrogen
atoms in a magnetic field would be stable against formation of molecules
and, moreover, would not form a liquid, but remain a gas to arbitrarily low
temperatures.

Hecht’s paper was before its time and received little attention, but his
conclusions were confirmed by Stwalley and Nosanow [10] in 1976, when im-
proved information about interactions between spin-aligned hydrogen atoms
was available. These authors also argued that because of interatomic inter-
actions the system would be a superfluid as well as being Bose–Einstein
condensed. This latter paper stimulated the quest to realize Bose–Einstein
condensation in atomic hydrogen. Initial experimental attempts used a
high magnetic field gradient to force hydrogen atoms against a cryogeni-
cally cooled surface. In the lowest-energy spin state of the hydrogen atom,
the electron spin is aligned opposite the direction of the magnetic field (H↓),
since then the magnetic moment is in the same direction as the field. Spin-
polarized hydrogen was first stabilized by Silvera and Walraven [11]. Interac-
tions of hydrogen with the surface limited the densities achieved in the early
experiments, and this prompted the Massachusetts Institute of Technology
(MIT) group led by Greytak and Kleppner to develop methods for trapping
atoms purely magnetically. In a current-free region, it is impossible to create
a local maximum in the magnitude of the magnetic field. To trap atoms by
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4 Introduction

the Zeeman effect it is therefore necessary to work with a state of hydrogen
in which the electronic spin is polarized parallel to the magnetic field (H↑).
Among the techniques developed by this group is that of evaporative cooling
of trapped gases, which has been used as the final stage in all experiments
to date to produce a gaseous Bose–Einstein condensate. Since laser cooling
is not feasible for hydrogen, the gas was precooled cryogenically. After more
than two decades of heroic experimental work, Bose–Einstein condensation
of atomic hydrogen was achieved in 1998 [12].

As a consequence of the dramatic advances made in laser cooling of alkali
atoms, such atoms became attractive candidates for Bose–Einstein conden-
sation, and they were used in the first successful experiments to produce
a gaseous Bose–Einstein condensate. In later developments other atoms
have been shown to undergo Bose–Einstein condensation: metastable 4He
atoms in the lowest-energy electronic spin-triplet state [13, 14], and ytter-
bium [15,16] and chromium atoms [17] in their electronic ground states.

The properties of interacting Bose fluids are treated in many texts. The
reader will find an illuminating discussion in the volume by Nozières and
Pines [18]. A collection of articles on Bose–Einstein condensation in vari-
ous systems, prior to its discovery in atomic vapours, is given in [19], while
more recent theoretical developments have been reviewed in [20]. The 1998
Varenna lectures are a useful general reference for both experiment and the-
ory on Bose–Einstein condensation in atomic gases, and contain in addition
historical accounts of the development of the field [21]. For a tutorial review
of some concepts basic to an understanding of Bose–Einstein condensation
in dilute gases see Ref. [22]. The monograph [23] gives a comprehensive
account of Bose–Einstein condensation in liquid helium and dilute atomic
gases.

1.1 Bose–Einstein condensation in atomic clouds

Bosons are particles with integer spin. The wave function for a system of
identical bosons is symmetric under interchange of the coordinates of any
two particles. Unlike fermions, which have half-odd-integer spin and an-
tisymmetric wave functions, bosons may occupy the same single-particle
state. An estimate of the transition temperature to the Bose–Einstein con-
densed state may be made from dimensional arguments. For a uniform gas
of free particles, the relevant quantities are the particle mass m, the num-
ber of particles per unit volume n, and the Planck constant h = 2π�. The
only quantity having dimensions of energy that can be formed from �, n,
and m is �

2n2/3/m. By dividing this energy by the Boltzmann constant

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84651-6 - Bose–Einstein Condensation in Dilute Gases
C. J. Pethick and H. Smith
Excerpt
More information

http://www.cambridge.org/9780521846516
http://www.cambridge.org
http://www.cambridge.org


1.1 Bose–Einstein condensation in atomic clouds 5

k we obtain an estimate of the condensation temperature Tc,

Tc = C
�

2n2/3

mk
. (1.1)

Here C is a numerical factor which we shall show in the next chapter to
be equal to approximately 3.3. When (1.1) is evaluated for the mass and
density appropriate to liquid 4He at saturated vapour pressure one obtains
a transition temperature of approximately 3.13 K, which is close to the
temperature below which superfluid phenomena are observed, the so-called
lambda point2 (Tλ= 2.17 K at saturated vapour pressure).

An equivalent way of relating the transition temperature to the parti-
cle density is to compare the thermal de Broglie wavelength λT with the
mean interparticle spacing, which is of order n−1/3. The thermal de Broglie
wavelength is conventionally defined by

λT =
(

2π�
2

mkT

)1/2

. (1.2)

At high temperatures, it is small and the gas behaves classically. Bose–
Einstein condensation in an ideal gas sets in when the temperature is so low
that λT is comparable to n−1/3. For alkali atoms, the densities achieved
range from 1013 cm−3 in early experiments to 1014–1015 cm−3 in more re-
cent ones, with transition temperatures in the range from 100 nK to a few
μK. For hydrogen, the mass is lower and the transition temperatures are
correspondingly higher.

In experiments, gases are non-uniform, since they are contained in a trap,
which typically provides a harmonic-oscillator potential. If the number of
particles is N , the density of gas in the cloud is of order N/R3, where the
size R of a thermal gas cloud is of order (kT/mω2

0)
1/2, ω0 being the angu-

lar frequency of single-particle motion in the harmonic-oscillator potential.
Substituting the value of the density n ∼ N/R3 at T = Tc into Eq. (1.1),
one sees that the transition temperature is given by

kTc = C1�ω0N
1/3, (1.3)

where C1 is a numerical constant which we shall later show to be approx-
imately 0.94. The frequencies for traps used in experiments are typically
of order 102 Hz, corresponding to ω0 ∼ 103 s−1, and therefore, for parti-
cle numbers in the range from 104 to 108, the transition temperatures lie
in the range quoted above. Estimates of the transition temperature based
2 The name lambda point derives from the shape of the experimentally measured specific heat as

a function of temperature, which near the transition resembles the Greek letter λ.
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6 Introduction

on results for a uniform Bose gas are therefore consistent with those for a
trapped gas.

In the original experiment [1] the starting point was a room-temperature
gas of rubidium atoms, which were trapped and cooled by lasers to about 20
μK. Subsequently the lasers were turned off and the atoms trapped magnet-
ically by the Zeeman interaction of the electron spin with an inhomogeneous
magnetic field. If we neglect complications caused by the nuclear spin, an
atom with its electron spin parallel to the magnetic field is attracted to the
minimum of the magnetic field, while one with its electron spin antiparallel
to the magnetic field is repelled. The trapping potential was provided by
a quadrupole magnetic field, upon which a small oscillating bias field was
imposed to prevent loss of particles at the centre of the trap. Later experi-
ments have employed a wealth of different magnetic field configurations, and
also made extensive use of optical traps.

In the magnetic trap the cloud of atoms was cooled further by evapora-
tion. The rate of evaporation was enhanced by applying a radio-frequency
magnetic field which flipped the electronic spin of the most energetic atoms
from up to down. Since the latter atoms are repelled by the trap, they es-
cape, and the average energy of the remaining atoms falls. It is remarkable
that no cryogenic apparatus was involved in achieving the record-low tem-
peratures in the experiment [1]. Everything was held at room temperature
except the atomic cloud, which was cooled to temperatures of the order of
100 nK.

So far, Bose–Einstein condensation has been realized experimentally in
dilute gases of hydrogen, lithium, sodium, potassium, chromium, rubidium,
cesium, ytterbium, and metastable helium atoms. Due to the difference in
the properties of these atoms and their mutual interaction, the experimental
study of the condensates has revealed a range of fascinating phenomena
which will be discussed in later chapters. The presence of the nuclear and
electronic spin degrees of freedom adds further richness to these systems
when compared with liquid 4He, and it gives the possibility of studying
multi-component condensates.

From a theoretical point of view, much of the appeal of atomic gases stems
from the fact that at low energies the effective interaction between particles
may be characterized by a single quantity, the scattering length. The gases
are often dilute in the sense that the scattering length is much less than
the interparticle spacing. This makes it possible to calculate the properties
of the system with high precision. For a uniform dilute gas the relevant
theoretical framework was developed in the 1950s and 60s, but the presence
of a confining potential gives rise to new features that are absent for uniform
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1.2 Superfluid 4He 7

systems. The possibility of tuning the interatomic interaction by varying
the magnitude of the external magnetic field makes it possible to study
experimentally also the regime where the scattering length is comparable to
or much larger than the interparticle spacing. Under these conditions the
atomic clouds constitute strongly interacting many-body systems.

1.2 Superfluid 4He

Many of the concepts used to describe properties of quantum gases were
developed in the context of liquid 4He. The helium liquids are exceptions to
the rule that liquids solidify when cooled to sufficiently low temperatures,
because the low mass of the helium atom makes the zero-point energy large
enough to overcome the tendency to crystallization. At the lowest temper-
atures the helium liquids solidify only under a pressure in excess of 25 bar
(2.5 MPa) for 4He and 34 bar for the lighter isotope 3He.

Below the lambda point, liquid 4He becomes a superfluid with many re-
markable properties. One of the most striking is the ability to flow through
narrow channels without friction. Another is the existence of quantized vor-
ticity, the quantum of circulation being given by h/m (= 2π�/m). The
occurrence of frictionless flow led Landau and Tisza to introduce a two-fluid
description of the hydrodynamics. The two fluids – the normal and the
superfluid components – are interpenetrating, and their densities depend
on temperature. At very low temperatures the density of the normal com-
ponent vanishes, while the density of the superfluid component approaches
the total density of the liquid. The superfluid density is therefore generally
quite different from the density of particles in the condensate, which for liq-
uid 4He is only about 10% or less of the total, as mentioned above. Near the
transition temperature to the normal state the situation is reversed: here
the superfluid density tends towards zero as the temperature approaches the
lambda point, while the normal density approaches the density of the liquid.

The properties of the normal component may be related to the elementary
excitations of the superfluid. The concept of an elementary excitation plays
a central role in the description of quantum systems. In a uniform ideal
gas an elementary excitation corresponds to the addition of a single particle
in a momentum eigenstate. Interactions modify this picture, but for low
excitation energies there still exist excitations with well-defined energies. For
small momenta the excitations in liquid 4He are sound waves or phonons.
Their dispersion relation is linear, the energy ε being proportional to the
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8 Introduction
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Fig. 1.1 The spectrum of elementary excitations in superfluid 4He. The minimum
roton energy is Δ.

magnitude of the momentum p,

ε = sp, (1.4)

where the constant s is the velocity of sound. For larger values of p, the
dispersion relation shows a slight upward curvature for pressures less than
18 bar, and a downward one for higher pressures. At still larger momenta,
ε(p) exhibits first a local maximum and subsequently a local minimum. Near
this minimum the dispersion relation may be approximated by

ε(p) = Δ +
(p − p0)2

2m∗ , (1.5)

where m∗ is a constant with the dimension of mass and p0 is the momen-
tum at the minimum. Excitations with momenta close to p0 are referred
to as rotons. The name was coined to suggest the existence of vorticity
associated with these excitations, but they should really be considered as
short-wavelength phonon-like excitations. Experimentally, one finds at zero
pressure that m∗ is 0.16 times the mass of a 4He atom, while the constant Δ,
the minimum roton energy, is given by Δ/k = 8.7 K. The roton minimum
occurs at a wave number p0/� equal to 1.9 × 108 cm−1 (see Fig. 1.1). For
excitation energies greater than 2Δ the excitations become less well-defined
since they can decay into two rotons.

The elementary excitations obey Bose statistics, and therefore in thermal
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1.3 Other condensates 9

equilibrium their distribution function f0 is given by

f0 =
1

eε(p)/kT − 1
. (1.6)

The absence of a chemical potential in this distribution function is due to the
fact that the number of excitations is not a conserved quantity: the energy of
an excitation equals the difference between the energy of an excited state and
the energy of the ground state for a system containing the same number of
particles. The number of excitations therefore depends on the temperature,
just as the number of phonons in a solid does. This distribution function
Eq. (1.6) may be used to evaluate thermodynamic properties.

1.3 Other condensates
The concept of Bose–Einstein condensation finds applications in many sys-
tems other than liquid 4He and the atomic clouds discussed above. His-
torically, the first of these were superconducting metals, where the bosons
are pairs of electrons with opposite spin. Many aspects of the behaviour of
superconductors may be understood qualitatively on the basis of the idea
that pairs of electrons form a Bose–Einstein condensate, but the properties
of superconductors are quantitatively very different from those of a weakly
interacting gas of pairs. The important physical point is that the binding
energy of a pair is small compared with typical atomic energies, and at the
temperature where the condensate disappears the pairs themselves break up.
This situation is to be contrasted with that for the atomic systems, where
the energy required to break up an atom is the ionization energy, which is of
order electron volts. This corresponds to temperatures of tens of thousands
of degrees, which are much higher than the temperatures for Bose–Einstein
condensation.

Many properties of high-temperature superconductors may be understood
in terms of Bose–Einstein condensation of pairs, in this case of holes rather
than electrons, in states having predominantly d-like symmetry in contrast
to the s-like symmetry of pairs in conventional metallic superconductors.
The rich variety of magnetic and other behaviour of the superfluid phases
of liquid 3He is again due to condensation of pairs of fermions, in this case
3He atoms in triplet spin states with p-wave symmetry. Considerable exper-
imental effort has been directed towards creating Bose–Einstein condensates
of excitons, which are bound states of an electron and a hole [24], and of
biexcitons (‘molecules’ made up of two excitons) [25], but the strongest evi-
dence for condensation of such excitations has been obtained for polaritons
(hybrid excitations consisting of excitons and photons) [26].
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10 Introduction

Bose–Einstein condensation of pairs of fermions is also observed experi-
mentally in atomic nuclei, where the effects of neutron–neutron and proton–
proton pairing may be seen in the excitation spectrum as well as in re-
duced moments of inertia. A significant difference between nuclei and su-
perconductors is that the size of a pair in bulk nuclear matter is large
compared with the nuclear size, and consequently the manifestations of
Bose–Einstein condensation in nuclei are less dramatic than they are in
bulk systems. Theoretically, Bose–Einstein condensation of nucleon pairs
is expected to play an important role in the interiors of neutron stars,
and observations of glitches in the spin-down rate of pulsars have been
interpreted in terms of neutron superfluidity. The possibility of mesons,
either pions or kaons, forming a Bose–Einstein condensate in the cores
of neutron stars has been widely discussed, since this would have far-
reaching consequences for theories of supernovae and the evolution of neu-
tron stars [27].

In the field of nuclear and particle physics the ideas of Bose–Einstein
condensation also find application in the understanding of the vacuum as
a condensate of quark–antiquark (uū, dd̄ and ss̄) pairs, the so-called chiral
condensate. This condensate gives rise to particle masses in much the same
way as the condensate of electron pairs in a superconductor gives rise to the
gap in the electronic excitation spectrum. Condensation of pairs of quarks
with different flavours and spins has been the subject of much theoretical
work [28].

This brief account of the rich variety of contexts in which the physics of
Bose–Einstein condensation plays a role shows that an understanding of the
phenomenon is of importance in many branches of physics.

1.4 Overview

To assist the reader, we give here a brief survey of the material we cover.
We begin, in Chapter 2, by discussing Bose–Einstein condensation for non-
interacting gases in a confining potential. This is useful for developing
understanding of the phenomenon of Bose–Einstein condensation and for
application to experiment, since in dilute gases many quantities, such as
the transition temperature and the condensate fraction, are close to those
predicted for a non-interacting gas. We also discuss the density profile and
the velocity distribution of particles in an atomic cloud at zero tempera-
ture. When the thermal energy kT exceeds the spacing between the energy
levels of an atom in the confining potential, the gas may be described semi-
classically in terms of a particle distribution function that depends on both
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