
Introduction

The Laplacian acting on functions of finitely many variables appeared in the
works of Pierre Laplace (1749–1827) in 1782. After nearly a century and a half,
the infinite-dimensional Laplacian was defined. In 1922 Paul Lévy (1886–1971)
introduced the Laplacian for functions defined on infinite-dimensional spaces.

The infinite-dimensional analysis inspired by the book of Lévy Leçons
d’analyse fonctionnelle [93] attracted the attention of many mathematicians.
This attention was stimulated by the very interesting properties of the Lévy
Laplacian (which often do not have finite-dimensional analogues) and its vari-
ous applications.

In a work [68] (published posthumously in 1919) Gâteaux gave the definition
of the mean value of the functional over a Hilbert sphere, obtained the formula
for computation of the mean value for the integral functionals and formulated
and solved (without explicit definition of the Laplacian) the Dirichlet problem
for a sphere in a Hilbert space of functions. In this work he called harmonic
those functionals which coincide with their mean values.

In a note written in 1919 [92], which complements the work of Gâteaux,
Lévy gave the explicit definition of the Laplacian and described some of its
characteristic properties for the functions defined on a Hilbert function space.

In 1922, in his book [93] and in another publication [94] Lévy gave the
definition of the Laplacian for functions defined on infinite-dimensional spaces
and described its specific features. Moreover he developed the theory of mean
values and using the mean value over the Hilbert sphere, solved the Dirichlet
problem for Laplace and Poisson equations for domains in a space of sequences
and in a space of functions, obtained the general solution of a quasilinear equa-
tion. We have mentioned here only a few of a great number of results given in
Lévy’s book which is the classical work on infinite-dimensional analysis.

The second half of the twentieth century and the beginning of twenty-first
century follows a period of development of a number of trends originated
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2 Introduction

in [93], and the infinite-dimensional Laplacian has become an object of
systematic study. This was promoted by the appearance of its second edition
Problèmes concrets d’analyse fonctionnelle [95] in 1951 and the appearance,
largely due to the initiative of Polishchuk, of its Russian translation (edited by
Shilov) in 1967. During this period, there were published, among others, the
works of: Lévy [96], Polishchuk [111–125], Feller [36–66], Shilov [132–135],
Nemirovsky and Shilov [102], Nemirovsky [100, 101], Dorfman [28–33],
Sikiryavyi [137–145], Averbukh, Smolyanov and Fomin [10], Kalinin [82],
Sokolovsky [146–151], Bogdansky [13–22], Bogdansky and Dalecky [23],
Naroditsky [99], Hida [75–78], Hida and Saito [79], Hida, Kuo, Potthoff
and Streit [80], Yadrenko [158], Hasegawa [72–74], Kubo and Takenaka [85],
Gromov and Milman [69], Milman [97, 98], Kuo [86–88], Kuo, Obata and Saito
[89, 90], Saito [126–129], Saito and Tsoi [130], Obata [103–106], Accardi,
Gibilisco and Volovich [4], Accardi, Roselli and Smolyanov [5], Accardi and
Smolyanov [6], Accardi and Bogachev [1–3], Zhang [159], Koshkin [83, 84],
Scarlatti [131], Arnaudon, Belopolskaya and Paycha [9], Chung, Ji and Saito
[26], Léandre and Volovich [91], Albeverio, Belopolskaya and Feller [8].

Many problems of modern science lead to equations with Lévy Laplacians
and Lévy–Laplace type operators. They appear, for example, in superconduc-
tivity theory [24, 71, 152, 155], the theory of control systems [121, 122], Gauss
random field theory [158] and the theory of gauge fields (the Yang–Mills equa-
tion) [4], [91].

Lévy introduced the infinite-dimensional Laplacian acting on a function
U (x) by the formula

�LU (x0) = 2 lim
�→0

M(x0,�)U (x) − U (x0)

�2

(the Lévy Laplacian), where M(x0,�)U (x) is the mean value of the function
U (x) over the Hilbert sphere of radius � with centre at the point x0.

Given a function defined on the space of a countable number of variables
we have

�LU (x1, . . . , xn, . . .) = lim
n→∞

1

n

n∑
k=1

∂2U

∂x2
k

,

while for functions defined on a functional space we have

�LU (x(t)) = 1

b − a

b∫
a

δ2U (x)

δx(s)2
ds,

where δ2U (x)/δx(s)2 is the second-order variational derivative of U (x(t)).
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Introduction 3

But already, in 1914, Volterra [154] had used different second-order differ-
ential expressions such as

�0V (x(t)) =
b∫

a

δ2V (x)

δx(s)δx(s)
ds

(the Volterra Laplacian), where δ2V (x)/δx(s)δx(τ ) is the second mixed varia-
tional derivative of V (x(t)). In 1966 Gross [70] and Dalecky [27] independently
defined the infinite-dimensional elliptic operator of the second order which in-
cludes the Laplace operator

�0V (x(t)) = Tr V ′′(x),

where V ′′(x) is the Hessian of the function V (x) at the point x . For a function
V defined on a functional space, �0V (x(t)) is the Volterra Laplacian, and for
functions defined on the space of a countable number of variables, we have

�0V (x1, . . . , xn, . . .) =
∞∑

k=1

∂2V

∂x2
k

.

There exists a number of other examples of second-order infinite-dimensional
differential expressions which considerably differ from the differential expres-
sions of Lévy type. The corresponding references can be found in the bibliog-
raphy to the monographs of Berezansky and Kondratiev [12] and Dalecky and
Fomin [27].

The present book deals with the problems of the theory of equations with
the Lévy Laplacians and Lévy–Laplace operators. It is based on the author’s
papers [36–38, 40, 50–66] and the paper [8].

In Chapter 1 we give the definition of the Lévy Laplacian and describe some
of its properties.

In the foreword to his book [95], Lévy wrote: ‘In the theories which we men-
tioned, we essentially face the laws of great numbers similar to the laws of the
theory of probabilities . . .’. The probabilistic treatment of the Lévy Laplacian
in the second, third, and fourth chapters allows us to enlarge on a number of
its interesting properties. Let us mention some of them. The Lévy Laplacian
gives rise to operators of arbitrary order depending on the choice of the domain
of definition of the operator. There is a huge number of harmonic functions
of infinitely many variables connected with the Lévy Laplacian. The natural
domain of definition of the Lévy Laplacian and that of the symmetrized Lévy
Laplacian do not intersect. Starting from the non-symmetrized Lévy Laplacian,
one can construct a symmetric and even a self-adjoint operator.
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4 Introduction

Problems in the theory of equations with Lévy Laplacians are considered in
Chapters 5–7.

First, we concentrate our attention on the main classes of linear elliptic and
parabolic equations with Lévy Laplacians.

The equations which describe real physical processes are, as a rule, nonlinear.
The theory of linear equations with the Lévy Laplacian is quite developed (see
the bibliography). On the other hand, the theory of nonlinear equations with the
Lévy Laplacian has only recently begun to be developed. The final two chapters
deal with elliptic quasilinear and nonlinear and parabolic nonlinear equations
with the Lévy Laplacian.

We will see how striking is the difference (especially in the nonlinear case)
between the theories of infinite-dimensional and n-dimensional partial differ-
ential equations.

Finally in the Appendix we apply the results of Chapter 3 to the construction
of Dirichlet forms associated with the Lévy–Laplace operator, and show the
connection between these forms and Markov processes.

There is no doubt that the reader of this book will see that the properties
of the Lévy Laplacian, as a rule, have no analogues with the classical finite-
dimensional Laplacian. Moreover, the differences are so essential that one can
call them pathological if the properties of the Laplace operator for functions
of a finite number of variables are considered to be the norm. However, from
another point of view the opposite statement is true as well.

It should be emphasized that in this book we consider only the Lévy
Laplacian. We do not consider here the problems of the theory of equations
and operators of Lévy type (which naturally generalize the equations with Lévy
Laplacians and Lévy–Laplace operators) considered in our papers [39, 41–49].

Unfortunately, a lot of the results concerning different trends originated in
the book by Lévy are not included in this work although they undoubtedly
deserve to be considered. In particular we do not discuss here the well-known
approach to the Lévy Laplacian via white noise theory [80, 88]. I hope that this
is compensated for to some extent by the large bibliography presented here.

With great warmth I recollect numerous conversations on the topics dis-
cussed in this book with those who have departed: Yu. L. Dalecky (1926–
1997), O. A. Ladyzhenskaya (1922–2004), E. M. Polishchuk (1914–1987) and
G. E. Shilov (1917–1975).

During the preparation of this book for publication I was helped by Ya. I.
Belopolskaya and I. I. Kovtun, and I am very grateful to them for their help.
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1

The Lévy Laplacian

1.1 Definition of the infinite-dimensional Laplacian

Let H be a countably-dimensional real Hilbert space. Consider a scalar function
F(x) on H, where x ∈ H.

Lévy introduced the infinite-dimensional differential Laplacian by

�L F(x0) = 2 lim
�→0

M(x0,�) F(x) − F(x0)

�2
. (1.1)

This definition assumes that F(x) has the mean value M(x0,�) F(x), for
� < �0, and that the limit at the right-hand side of (1.1) exists.

We define the mean value of the function F(x) over the Hilbert sphere ‖x −
x0‖2

H = �2 as the limit (if it exists) of the mean value, over the n-dimensional
sphere, of the function F(

∑n
k=1 xk fk) = f (x1, . . . , xn), i.e., of the restriction of

the function F(x) on the n-dimensional subspace with the basis { fk}n
1, xk =

(x, fk)H :

M(x0,�) F(x) = lim
n→∞ Mn F(x),

Mn F(x) = 1

sn

∫
n∑

k=1
(xk−x0k )2=�2

f (x1, . . . , xn)dσn,

where sn is the area, and dσn is the element of the n-dimensional sphere surface.
In general, the mean value depends on the choice of the basis.

It follows immediately from its definition that the mean value is additive and
homogeneous: if there exists M(xo,�) Fk, k = 1, . . . , m, then there exists

M(xo,�)

( m∑
k=1

ck Fk

)
=

m∑
k=1

ckM(x0,�) Fk .
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6 The Lévy Laplacian

The mean value possesses the multiplicative property: if there exists
M(xo,�) Fk, and the Fk are uniformly continuous in a bounded domain � ∈ H,

which contains the sphere ‖x − x0‖2
H = �2, then there exists

M(x0,�)

( m∏
k=1

Fk

)
=

m∏
k=1

M(x0,�) Fk .

This property follows from the following statement of Lévy. Let function F(x)
be uniformly continuous on the sphere ‖x − x0‖2

H = �2, and let the average of
the function F(x) exist (i.e., Mn → M, M = M(x0,�) F ). Then for each δ > 0
we have

lim
n→∞

1

sn
mn{x : | f (x1, . . . , xn) − M | > δ} = 0

(here mn denotes the Lebesgue measure).
Note that the definition of the Laplacian via mean values is valid for the

finite-dimensional case as well.
The definition (1.1) does not assume differentiability of the function F(x).

However, if the function F(x) is twice strongly differentiable, then the following
representation of the Lévy Laplacian holds.

Lemma 1.1 Let the function F(x) be twice strongly differentiable in point x0,

and the Laplacian �L exist. Then

�L F(x0) = lim
n→∞

1

n

n∑
k=1

(F ′′(x0) fk, fk)H , (1.2)

where F ′′(x0) is the Hessian of the function F(x) in the point x0, F ′′(x0) ∈
{H → H}, and { fk}∞1 is some chosen orthonormal basis in H.

Indeed, it follows from the definition of the mean value that M(x0,�) F(x) =
MF(x0 + �h), where M	(h) is the mean value of the function 	 over
the sphere ‖h‖2

H = 1. Therefore, taking into account that for a ∈ H
M (a, h)H = 0, because 1

sn

∫∑n
k=1 h2

k=1 hkdσn = 0, we have

1

�2
{M(x0,�) F(x) − F(x0)} = 1

�2
{MF(x0 + �h) − F(x0)}

= 1

�2

{
M

[
(F ′(x0), �h)H + 1

2
(F ′′(x0)�h, �h)H + r (x0, �h)

]}

= 1

�2

{
lim

n→∞Mn

[
�2

2
(F ′′(x0)h, h)H + r (x0, �h)

]}

≥ 1

2
lim

n→∞Mn(F ′′(x0)h, h)H limn→∞
Mnr (x0, �h)

�2(
and

r (x0, �h)

‖�h‖2
H

→ 0 as ‖�h‖2
H → 0

)
;
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1.1 Definition of the infinite-dimensional Laplacian 7

similarly we have

1

�2
{M(x0,�) F(x) − F(x0)} ≤ 1

2
limn→∞Mn(F ′′(x0)h, h)H + lim

n→∞
Mnr (x0, �h)

�2
.

From this we obtain

1

�2
{M(x0,�) F(x) − F(x0)} − ε(�) ≤ 1

2
limn→∞Mn(F ′′(x0)h, h)H

≤ 1

2
lim

n→∞Mn(F ′′(x0)h, h))H ≤ 1

�2
{M(x0,�) F(x) − F(x0)} + ε(�),

where ε(�) = 1
�2 sup‖h‖2

H =1 |r (x0, �h)|, ε(�) → 0 as � → 0.

Therefore, �L F(x0) = M(F ′′(x0)h, h)H .

Taking into consideration that, according to formula of Ostrogradsky,

Mnh2
k = 1

sn

∫
n∑

k=1
h2

k=1

h2
k dσn = 1

sn

∫
n∑

k=1
h2

k≤1

∂hk

∂hk
dh1 . . . dhn

= vn

sn
= π

n
2 /�( n

2 + 1)

2π
n
2 /�( n

2 )
= 1

n
,

Mnhkh j = 1

sn

∫
n∑

k=1
h2

k=1

hkh j dσn = 0 for j 	= k,

(here hk = (h, fk)H , vn is volume, sn is the area of surface of the sphere∑n
k=1 h2

k = 1, �(s) the gamma function), we obtain that

�L F(x0) = M(F ′′(x0)h, h)H = lim
n→∞

1

n

n∑
k=1

(F ′′(x0) fk, fk)H .

�
If at the given point x0 the function F(x) is twice differentiable only with

respect to the subspace Y of the space H (i.e., the second differential of the
function F(x) at the point x0 does not exist for all increments h ∈ H, but
d2 F(x0, y) = (F ′′

Y (x0)y, y)H exists for the increments y that form the subspace
Y of the space H, and the second derivative of the function F(x) at the point x0

with respect to the subspace Y is the operator F ′′
Y (x0) ∈ {Y → Y ′}, where Y ′ is

the space conjugate to Y ), then from (1.1) we deduce that

�L F(x0) = lim
n→∞

1

n

n∑
k=1

(F ′′
Y (x0) fk, fk)H , (1.3)

provided that the basis { fk}∞1 is orthonormal in H and that fk ∈ Y.

Now we give the formula for the infinite-dimensional Laplacian obtained by
Lévy.
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8 The Lévy Laplacian

Let there be a function

F(x) = f (U1(x), . . . , Um(x)),

where f (u1, . . . , um) is a twice continuously differentiable function of m vari-
ables in the domain of values {U1(x), . . . , Um(x)} in R

m, U j (x) are some twice
strongly differentiable functions, and the �LU j (x) exist ( j = 1, . . . , m). Then
�L F(x) exists, and

�L F(x) =
m∑

j=1

∂ f

∂u j

∣∣∣
u j =U j (x)

�LU j (x). (1.4)

Indeed, the second differential of the function F(x) at the point x for incre-
ment h ∈ H is

d2 F(x ; h) = (F ′′(x)h, h)H =
m∑

i, j=1

∂2 f

∂ui∂u j

∣∣∣
ul=Ul (x)

(U ′
i (x), h)H (U ′

j (x), h)H

+
m∑

j=1

∂ f

∂u j

∣∣∣
u j =U j (x)

(U ′′
j (x)h, h)H .

According to (1.2),

�L F(x) =
m∑

i, j=1

∂2 f

∂ui∂u j

∣∣∣
ul=Ul (x)

lim
n→∞

1

n

n∑
k=1

(U ′
i (x), fk)H (U ′

j (x), fk)H

+
m∑

j=1

∂ f

∂u j

∣∣∣
u j =U j (x)

lim
n→∞

1

n

n∑
k=1

(U ′′
j (x) fk, fk)H .

But

lim
n→∞

1

n

n∑
k=1

(U ′
i (x), fk)H (U ′

j (x), fk)H = 0,

(because (U ′
l (x), fk)H → 0 as k → ∞), and

lim
n→∞

1

n

n∑
k=1

(U ′′
j (x) fk, fk)H = �LU j (x).

Therefore,

�L F(x) =
m∑

j=1

∂ f

∂u j

∣∣∣
u j =U j (x)

�LU j (x).

A series of consequences follows from formula (1.4).

1. If the functions Uk(x) are harmonic in some domain �, k = 1, . . . , m,

then the function F(x) also is harmonic in �.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521846226 - The Levy Laplacian
M. N. Feller
Excerpt
More information

http://www.cambridge.org/0521846226
http://www.cambridge.org
http://www.cambridge.org


1.2 Examples of Laplacians 9

2. The Lévy Laplacian is a ‘differentiation’. It is enough to set F(x) =
U1(x)U2(x): then

�L [U1(x)U2(x)] = �LU1(x) · U2(x) + U1(x) · �LU2(x).

3. The Liouville theorem does not hold for harmonic functions of an infinite
number of variables, i.e., there exists a function that is not equal to a
constant which is harmonic and bounded in the whole space: it is sufficient
to put F(x) = f (U (x)), where f (u) is a differentiable function in R

1

bounded together with its derivative, U (x), which is a harmonic function in
the whole of H . For example, F(x) = cos(α, x)H , α ∈ H.

1.2 Examples of Laplacians for functions on
infinite-dimensional spaces

For functions on a space of sequences, the Lévy Laplacian is an operator with an
infinite number of partial derivatives, and for functions on spaces of functions
of finitely many variables, the Lévy Laplacian is an operator in variational
derivatives.

Example 1.1 Let H = l2 be the space of sequences {x1, . . . , xn, . . .} such that∑∞
k=1 x2

k < ∞.

If the function F(x1, . . . , xn, . . .) is twice strongly differentiable, and the
Laplacian exists, then its Hessian is the matrix

∣∣∣∣∣∣∂2 F(x)

∂xi∂xk

∣∣∣∣∣∣∞
i,k=1

which induces a bounded operator in l2 :

(F ′′(x)h, h)l2 =
∞∑

i,k=1

∂2 F(x)

∂xi∂xk
hi hk,

and (1.2) yields that

�L F(x1, . . . , xn, . . .) = lim
n→∞

1

n

n∑
k=1

∂2 F(x)

∂x2
k

.

Example 1.2 Let H = L2(0, 1) be the space of functions x(t), square inte-
grable on [0, 1].

If the second differential of the twice differentiable function F(x(t)) has the
form

d2 F(x ; h) =
1∫

0

δ2 F(x)

δx(s)2
h2(s) ds +

1∫
0

1∫
0

δ2 F(x)

δx(s)δx(τ )
h(s)h(τ ) dsdτ,
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10 The Lévy Laplacian

where the second variational derivative δ2 F(x)/δx(s)2 and the second mixed
variational derivative δ2 F(x)/δx(s)δx(τ ) are continuous with respect to s and
s, τ respectively (here h(t) ∈ L2(0, 1)), then one says that d2 F(x ; h) has normal
form [95], and if

d2 F(x ; h) =
1∫

0

1∫
0

δ2 F(x)

δx(s)δx(τ )
h(s)h(τ ) dsdτ,

than one says that it has regular form [154].
We denote by B the set of all uniformly dense (according to the Lévy termi-

nology) bases in L2(0, 1), i.e. orthonormal bases { fk}∞1 in L2(0, 1), such that

lim
n→∞(y, ϕn)L2(0,1) = (y, 1)L2(0,1) for all y ∈ L2(0, 1),

where ϕn(s) = 1
n

∑n
k=1 f 2

k (s).
As has been shown by Polishchuk (in his comments to the Russian translation

of [95]), all orthonormal bases which are the eigenfunctions of some Sturm–
Liouville problem are uniformly dense.

Let the function F(x) be twice strongly differentiable, and the second dif-
ferential have normal form. Then

�L F(x(t)) =
1∫

0

δ2 F(x)

δx(s)2
ds

for arbitrary basis from B.

Indeed,

(F ′′(x)h, h)L2(0,1) =
1∫

0

1∫
0

[
δ(s − τ )

δ2 F(x)

δx(s)2
ds + δ2 F(x)

δx(s)δx(τ )

]
h(s)h(τ ) dsdτ

(δ(s − τ ) is the delta function), and, according to (1.2),

�L F(x(t)) = lim
n→∞

[ 1∫
0

δ2 F(x)

δx(s)2
ϕn(s) ds + δ2 F(x)

δx(s)δx(τ )
ψn(s, τ ) dsdτ

]
,

where ψn(s, τ ) = 1
n

∑n
k=1 fk(s) fk(τ ).

But

1∫
0

1∫
0

δ2 F(x)

δx(s)δx(τ )
ψn(s, τ ) dsdτ → 0 as n → ∞,
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