Contents

Preface

Preface

Terminology

Terminology

1. **Heights**

 1.1. Introduction

 1.2. Absolute values

 1.3. Finite-dimensional extensions

 1.4. The product formula

 1.5. Heights in projective and affine space

 1.6. Heights of polynomials

 1.7. Lower bounds for norms of products of polynomials

 1.8. Bibliographical notes

2. **Weil heights**

 2.1. Introduction

 2.2. Local heights

 2.3. Global heights

 2.4. Weil heights

 2.5. Explicit bounds for Weil heights

 2.6. Bounded subsets

 2.7. Metrized line bundles and local heights

 2.8. Heights on Grassmannians

 2.9. Siegel’s lemma

 2.10. Bibliographical notes

3. **Linear tori**

 3.1. Introduction

 3.2. Subgroups and lattices

 3.3. Subvarieties and maximal subgroups

 3.4. Bibliographical notes
4. Small points

4.1. Introduction 93
4.2. Zhang’s theorem 93
4.3. The equidistribution theorem 101
4.4. Dobrowolski’s theorem 107
4.5. Remarks on the Northcott property 117
4.6. Remarks on the Bogomolov property 120
4.7. Bibliographical notes 123

5. The unit equation

5.1. Introduction 125
5.2. The number of solutions of the unit equation 126
5.3. Applications 140
5.4. Effective methods 146
5.5. Bibliographical notes 149

6. Roth’s theorem

6.1. Introduction 150
6.2. Roth’s theorem 152
6.3. Preliminary lemmas 156
6.4. Proof of Roth’s theorem 163
6.5. Further results 170
6.6. Bibliographical notes 174

7. The subspace theorem

7.1. Introduction 176
7.2. The subspace theorem 177
7.3. Applications 181
7.4. The generalized unit equation 186
7.5. Proof of the subspace theorem 197
7.6. Further results: the product theorem 226
7.7. The absolute subspace theorem and the Faltings–Wütholz theorem 227
7.8. Bibliographical notes 230

8. Abelian varieties

8.1. Introduction 231
8.2. Group varieties 232
8.3. Elliptic curves 240
8.4. The Picard variety 246
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>The theorem of the square and the dual abelian variety</td>
<td>252</td>
</tr>
<tr>
<td>8.6</td>
<td>The theorem of the cube</td>
<td>257</td>
</tr>
<tr>
<td>8.7</td>
<td>The isogeny multiplication by n</td>
<td>263</td>
</tr>
<tr>
<td>8.8</td>
<td>Characterization of odd elements in the Picard group</td>
<td>265</td>
</tr>
<tr>
<td>8.9</td>
<td>Decomposition into simple abelian varieties</td>
<td>267</td>
</tr>
<tr>
<td>8.10</td>
<td>Curves and Jacobians</td>
<td>268</td>
</tr>
<tr>
<td>8.11</td>
<td>Bibliographical notes</td>
<td>282</td>
</tr>
<tr>
<td>9</td>
<td>Néron–Tate heights</td>
<td>283</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>9.2</td>
<td>Néron–Tate heights</td>
<td>284</td>
</tr>
<tr>
<td>9.3</td>
<td>The associated bilinear form</td>
<td>289</td>
</tr>
<tr>
<td>9.4</td>
<td>Néron–Tate heights on Jacobians</td>
<td>294</td>
</tr>
<tr>
<td>9.5</td>
<td>The Néron symbol</td>
<td>301</td>
</tr>
<tr>
<td>9.6</td>
<td>Hilbert’s irreducibility theorem</td>
<td>314</td>
</tr>
<tr>
<td>9.7</td>
<td>Bibliographical notes</td>
<td>326</td>
</tr>
<tr>
<td>10</td>
<td>The Mordell–Weil theorem</td>
<td>328</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>328</td>
</tr>
<tr>
<td>10.2</td>
<td>The weak Mordell–Weil theorem for elliptic curves</td>
<td>329</td>
</tr>
<tr>
<td>10.3</td>
<td>The Chevalley–Weil theorem</td>
<td>335</td>
</tr>
<tr>
<td>10.4</td>
<td>The weak Mordell–Weil theorem for abelian varieties</td>
<td>341</td>
</tr>
<tr>
<td>10.5</td>
<td>Kummer theory and Galois cohomology</td>
<td>344</td>
</tr>
<tr>
<td>10.6</td>
<td>The Mordell–Weil theorem</td>
<td>349</td>
</tr>
<tr>
<td>10.7</td>
<td>Bibliographical notes</td>
<td>351</td>
</tr>
<tr>
<td>11</td>
<td>Faltings’s theorem</td>
<td>352</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>352</td>
</tr>
<tr>
<td>11.2</td>
<td>The Vojta divisor</td>
<td>356</td>
</tr>
<tr>
<td>11.3</td>
<td>Mumford’s method and an upper bound for the height</td>
<td>359</td>
</tr>
<tr>
<td>11.4</td>
<td>The local Eisenstein theorem</td>
<td>360</td>
</tr>
<tr>
<td>11.5</td>
<td>Power series, norms, and the local Eisenstein theorem</td>
<td>362</td>
</tr>
<tr>
<td>11.6</td>
<td>A lower bound for the height</td>
<td>371</td>
</tr>
<tr>
<td>11.7</td>
<td>Construction of a Vojta divisor of small height</td>
<td>376</td>
</tr>
<tr>
<td>11.8</td>
<td>Application of Roth’s lemma</td>
<td>381</td>
</tr>
<tr>
<td>11.9</td>
<td>Proof of Faltings’s theorem</td>
<td>387</td>
</tr>
<tr>
<td>11.10</td>
<td>Some further developments</td>
<td>391</td>
</tr>
<tr>
<td>11.11</td>
<td>Bibliographical notes</td>
<td>400</td>
</tr>
</tbody>
</table>
12. The abc-conjecture

12.1. Introduction 401
12.2. The abc-conjecture 402
12.3. Belyi’s theorem 411
12.4. Examples 416
12.5. Equivalent conjectures 424
12.6. The generalized Fermat equation 435
12.7. Bibliographical notes 442

13. Nevanlinna theory

13.1. Introduction 444
13.2. Nevanlinna theory in one variable 444
13.3. Variations on a theme: the Ahlfors–Shimizu characteristic 457
13.4. Holomorphic curves in Nevanlinna theory 465
13.5. Bibliographical notes 477

14. The Vojta conjectures

14.1. Introduction 479
14.2. The Vojta dictionary 480
14.3. Vojta’s conjectures 483
14.4. A general abc-conjecture 488
14.5. The abc-theorem for function fields 498
14.6. Bibliographical notes 513

Appendix A. Algebraic geometry

A.1. Introduction 514
A.2. Affine varieties 514
A.3. Topology and sheaves 518
A.4. Varieties 521
A.5. Vector bundles 525
A.6. Projective varieties 530
A.7. Smooth varieties 536
A.8. Divisors 544
A.9. Intersection theory of divisors 551
A.10. Cohomology of sheaves 563
A.11. Rational maps 574
A.12. Properties of morphisms 577
A.13. Curves and surfaces 581
A.14. Connexion to complex manifolds 583
Appendix B. Ramification

B.1. Discriminants
B.2. Unramified field extensions
B.3. Unramified morphisms
B.4. The ramification divisor

Appendix C. Geometry of numbers

C.1. Adeles
C.2. Minkowski’s second theorem
C.3. Cube slicing

References
Glossary of notation
Index