Introduction to General Relativity

A student-friendly style, over 100 illustrations, and numerous exercises are brought together in this textbook for advanced undergraduate and beginning graduate students in physics and mathematics.

Lewis Ryder develops the theory of General Relativity in detail. Covering the core topics of black holes, gravitational radiation and cosmology, he provides an overview of General Relativity and its modern ramifications. The book contains a chapter on the connections between General Relativity and the fundamental physics of the microworld, explains the geometry of curved spaces and contains key solutions of Einstein's equations – the Schwarzschild and Kerr solutions.

Mathematical calculations are worked out in detail, so students can develop an intuitive understanding of the subject, as well as learn how to perform calculations. Password-protected solutions for instructors are available at www.cambridge.org/Ryder.

Lewis Ryder is an Honorary Senior Lecturer in Physics at the University of Kent, UK. His research interests are in geometrical aspects of particle theory and its parallels with General Relativity.

Introduction to General Relativity

Lewis Ryder

University of Kent, UK

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the Universitys mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521845632

© L. Ryder 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2009 Reprinted 2015

Printed in the United Kingdom by Bell and Bain Ltd

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Ryder, Lewis H., 1941– Introduction to general relativity / Lewis Ryder. p. cm. Includes bibliographical references and index. ISBN 978-0-521-84563-2 1. General relativity (Physics) I. Title. QC173.6.R93 2009 530.11–dc22 2009005862

ISBN 978-0-521-84563-2 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Mildred Elizabeth Ryder

It is always a source of pleasure when a great and beautiful idea proves to be correct in actual fact. Albert Einstein [letter to Sigmund Freud]

The answer to all these questions may not be simple. I know there are some scientists who go about preaching that Nature always takes on the simplest solutions. Yet the simplest by far would be nothing, that there would be nothing at all in the universe. Nature is far more interesting than that, so I refuse to go along thinking it always has to be simple. Richard Feynman

Contents

Preface		<i>page</i> xiii
Notation,	important formulae and physical constants	xiv
1 Intro	duction	1
1.1	The need for a theory of gravity	1
1.2	Gravitation and inertia: the Equivalence Principle in mechanics	3
1.3	The Equivalence Principle and optics	9
1.4	Curved surfaces	14
Furth	er reading	16
Probl	ems	16
2 Spec	ial Relativity, non-inertial effects and electromagnetism	18
2.1	Special Relativity: Einstein's train	18
2.2	Twin paradox: accelerations	26
2.3	Rotating frames: the Sagnac effect	29
2.4	Inertia: Newton versus Mach	34
2.5	Thomas precession	36
2.6	Electromagnetism	40
2.7	Principle of General Covariance	43
Furth	er reading	45
Probl	ems	46
3 Diffe	rential geometry I: vectors, differential forms and absolute	
diffe	rentiation	47
3.1	Space-time as a differentiable manifold	47
3.2	Vectors and vector fields	49
3.3	One-forms	55
3.4	Tensors	61
3.5	Differential forms: Hodge duality	65
3.6	Exterior derivative operator: generalised Stokes' theorem	72
3.7	Maxwell's equations and differential forms	77
3.8	Metric tensor	79
3.9	Absolute differentiation: connection forms	86
3.10	Parallel transport	93
3.11	Some relations involving connection coefficients	97

X	Contents		
	3.12 Examples	102	
	3.13 General formula for connection coefficients	107	
	Further reading	110	
	Problems	110	
2	Differential geometry II: geodesics and curvature	112	
	4.1 Autoparallel curves and geodesics	112	
	4.2 Geodesic coordinates	119	
	4.3 Curvature	121	
	4.4 Symmetries of the Riemann tensor	125	
	4.5 Ricci tensor and curvature scalar	126	
	4.6 Curvature 2-form	129	
	4.7 Geodesic deviation	132	
	4.8 Bianchi identities	134	
	Further reading	135	
	Problems	135	
<u>i</u>	5 Einstein field equations, the Schwarzschild solution and experimental		
	tests of General Relativity	137	
	5.1 Newtonian limit	137	
	5.2 Einstein field equations	139	
	5.3 Schwarzschild solution	146	
	5.4 Time dependence and spherical symmetry: Birkhoff's theorem	151	
	5.5 Gravitational red-shift	154	
	5.6 Geodesics in Schwarzschild space-time	158	
	5.7 Precession of planetary orbits	160	
	5.8 Deflection of light	162	
	5.9 Note on PPN formalism	164	
	5.10 Gravitational lenses	165	
	5.11 Radar echoes from planets	169	
	5.12 Radial motion in a Schwarzschild field: black holes – frozen stars	173	
	5.13 A gravitational clock effect	176	
	Further reading	178	
	Problems	178	
(6 Gravitomagnetic effects: gyroscopes and clocks	180	
	6.1 Linear approximation	180	
	6.2 Precession of gyroscopes: the Lense–Thirring effect	191	
	6.3 Gravitomagnetism	200	
	6.4 Gravitomagnetic clock effect	204	
	6.5 Fermi–Walker transport: tetrad formalism	207	
	6.6 Lie derivatives. Killing vectors and groups of motion	211	
	6.7 Static and stationary space-times	219	
		-	

xi	Contents		
	6.8 Killing vectors and conservation laws	223	
	Further reading	225	
	Problems	226	
	7 Gravitational collapse and black holes	227	
	7.1 The interior Schwarzschild solution and the		
	Tolman–Oppenheimer–Volkoff equation	228	
	7.2 Energy density and binding energy	237	
	7.3 Degenerate stars: white dwarfs and neutron stars	243	
	7.4 Schwarzschild orbits: Eddington–Finkeistein coordinates	251	
	7.5 Kruskal–Szekeres coordinates	255	
	7.0 Emisterii-Rosen bridge and worminoles	239	
	7.8 Rotating black holes: Kerr solution	265	
	7.9 The ergosphere and energy extraction from a black hole	203	
	7.10 Surface gravity	2.80	
	7.11 Thermodynamics of black holes and further observations	287	
	7.12 Global matters: singularities, trapped surfaces and Cosmic Censorship	291	
	Further reading	293	
	Problems	294	
	8 Action principle, conservation laws and the Cauchy problem	295	
	8.1 Gravitational action and field equations	295	
	8.2 Energy-momentum pseudotensor	300	
	8.3 Cauchy problem	304	
	Further reading	309	
	Problems	309	
	9 Gravitational radiation	310	
	9.1 Weak field approximation	310	
	9.2 Radiation from a rotating binary source	317	
	9.3 Parallels between electrodynamics and General Relativity:		
	Petrov classification	328	
	Further reading	340	
	Problems	340	
	10 Cosmology	341	
	10.1 Brief description of the Universe	341	
	10.2 Robertson–Walker metric	344	
	10.3 Hubble's law and the cosmological red-shift	355	
	10.4 HORIZONS	357	
	10.5 Luminosity-red-snift relation	360 262	
	10.0 Dynamical equations of cosmology	203 271	
	10.7 Friedmann models and the cosmological constant	3/1	

xii	Contents			
	10.8 Cosmic background radiation	375		
	10.9 Brief sketch of the early Universe	377		
	10.10 The inflationary universe and the Higgs mechanism	383		
	Further reading	391		
	Problems	391		
	11 Gravitation and field theory	392		
	11.1 Electrodynamics as an abelian gauge theory	394		
	11.2 Non-abelian gauge theories	400		
	11.3 Gauging Lorentz symmetry: torsion	409		
	11.4 Dirac equation in Schwarzschild space-time	416		
	11.5 Five dimensions: gravity plus electromagnetism	418		
	Further reading	423		
	Problems	424		
	References	425		
	Index	439		

Preface

This book is designed for final year undergraduates or beginning graduate students in physics or theoretical physics. It assumes an acquaintance with Special Relativity and electromagnetism, but beyond that my aim has been to provide a pedagogical introduction to General Relativity, a subject which is now – at last – part of mainstream physics. The coverage is fairly conventional; after outlining the need for a theory of gravity to replace Newton's, there are two chapters devoted to differential geometry, including its modern formulation in terms of differential forms and coordinate-free vectors, then the Einstein field equations, the Schwarzschild solution, the Lense–Thirring effect (recently confirmed observationally), black holes, the Kerr solution, gravitational radiation and cosmology. The book ends with a chapter on field theory, describing similarities between General Relativity and gauge theories of particle physics, the Dirac equation in Riemannian space-time, and Kaluza–Klein theory.

As a research student I was lucky enough to attend the Les Houches summer school in 1963 and there, in the magnificent surroundings of the French alps, began an acquaintance with many of the then new aspects of this subject, just as it was entering the domain of physics proper, eight years after Einstein's death. A notable feature was John Wheeler's course on gravitational collapse, before he had coined the phrase 'black hole'. In part I like to think of this book as passing on to the community of young physicists, after a gap of more than 40 years, some of the excitement generated at that school.

I am very grateful to the staff at Cambridge University Press, Tamsin van Essen, Lindsay Barnes and particularly Simon Capelin for their unfailing help and guidance, and generosity over my failure to meet deadlines. I also gratefully acknowledge helpful conversations and correspondence with Robin Tucker, Bahram Mashhoon, Alexander Shannon, the late Jeeva Anandan, Brian Steadman, Daniel Ryder and especially Andy Hone, who have all helped to improve my understanding. Finally I particularly want to thank my wife, who has supported me throughout this long project, with constant good humour and generous and selfless encouragement. To her the book is dedicated.

Notation, important formulae and physical constants

Latin indices *i*, *j*, *k*, and so on run over the three spatial coordinates 1, 2, 3 or *x*, *y*, *z* or *r*, θ , ϕ Greek indices α , β , γ , ... κ , λ , μ , ... and so on run over the four space-time coordinates 0, 1, 2, 3 or *ct*, *x*, *y*, *z* or *ct*, *r*, θ , ϕ

Minkowski space-time: metric tensor is $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1), ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$ in Cartesian coordinates

Riemannian space-time: $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -c^2 d\tau^2$

The Levi-Cività totally antisymmetric symbol (in Minkowski space) is

$$\varepsilon^{0123} = -\varepsilon_{0123} = 1$$

Connection coefficients: $\Gamma^{\nu}_{\mu\kappa} = 1/2 g^{\nu\rho} (g_{\mu\rho,\kappa} + g_{\kappa\rho,\mu} - g_{\mu\kappa,\rho})$ Riemann tensor: $R^{\kappa}_{\lambda\mu\nu} = \Gamma^{\kappa}_{\lambda\nu,\mu} - \Gamma^{\kappa}_{\lambda\mu,\nu} + \Gamma^{\kappa}_{\rho\mu}\Gamma^{\rho}_{\lambda\nu} - \Gamma^{\kappa}_{\rho\nu}\Gamma^{\rho}_{\lambda\mu}$ Ricci tensor: $R_{\mu\nu} = R^{\rho}_{\mu\rho\nu}$ Curvature scalar: $R = g^{\mu\nu}R_{\mu\nu}$ Field equations: $G_{\mu\nu} = R_{\mu\nu} - 1/2 g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu}$ Covariant derivatives:

$$\frac{\mathbf{D}V^{\mu}}{\mathrm{d}x^{\nu}} = \frac{\partial V^{\mu}}{\partial x^{\nu}} + \Gamma^{\mu}{}_{\lambda\nu}V^{\lambda} \quad \text{or} \quad V^{\mu}{}_{;\nu} = V^{\mu}{}_{,\nu} + \Gamma^{\mu}{}_{\lambda\nu}V^{\lambda}$$

$$\frac{\mathbf{D}W_{\mu}}{\mathrm{d}x^{\nu}} = \frac{\partial W_{\mu}}{\partial x^{\nu}} - \Gamma^{\lambda}_{\mu\nu}W_{\lambda} \quad \text{or} \quad W_{\mu;\nu} = W_{\mu,\nu} - \Gamma^{\lambda}_{\mu\nu}W_{\lambda}$$

Speed of light	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
Gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-1}$
Planck's constant	$\hbar = 1.05 \times 10^{-34} \mathrm{Js}$
	$= 6.58 \times 10^{-22} \text{ MeV s}$
Electron mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
	$m_{\rm e}c^2 = 0.51 {\rm MeV}$
Proton mass	$m_{\rm p} = 1.672 \times 10^{-27} \rm kg$
	$m_{\rm p}c^2 = 938.3 {\rm MeV}$
Neutron mass	$m_{\rm n} = 1.675 \times 10^{-27} \rm kg$
	$m_{\rm n}c^2 = 939.6 {\rm MeV}$
Boltzmann constant	$k = 1.4 \times 10^{-23} \mathrm{J K^{-1}}$
	$= 8.6 \times 10^{-11} \mathrm{MeV}\mathrm{K}^{-1}$
Solar mass	$M_{\rm S} = 1.99 \times 10^{30} {\rm kg}$

xv	Notation, important formulae and physical constants	
	Solar radius	$R_{\rm S} = 6.96 \times 10^8 {\rm m}$
	Earth mass	$M_{\rm E} = 5.98 \times 10^{24} \rm kg$
	Earth equatorial radius	$R_{\rm E} = 6.38 \times 10^6 {\rm m}$
	Mean Earth-Sun distance	$R = 1.50 \times 10^{11} \text{ m} = 1 \text{ AU}$
	Schwarzschild radius of Sun	$2m = \frac{2M_{\rm S}G}{c^2} = 2.96\rm km$
	Stefan–Boltzmann constant	$\sigma = 5.67 \times 10^{-8} \mathrm{W m^{-2} K^{-4}}$
	1 light year (ly) = 9.46×10^{15} m	
	$1 \text{ pc} = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly}$	
	1 radian = 2.06×10^5 seconds of	arc

 $\textcircled{\sc online {\mathbb C}}$ in this web service Cambridge University Press