Cambridge University Press
0521845181 - The Integrative Action of the Autonomic Nervous System - Neurobiology of Homeostasis - by Wilfrid Jänig
Index
Acetylcholine
autonomic ganglia 212
muscarinic transmission, in vivo 240–247
parasympathetic postganglionic neurons 15
transmitter postganglionic 252–254, 254 (Tab. 7.1)
vasodilator neurons 131, 133, 172 (Fig. 5.2), 173–174
Adenosine
synaptic transmission to sympathetic preganglionic neurons 334
Adenosine triphosphate (ATP), transmitter
enteric nervous system 176 (Tab. 5.1), 177
peristalsis 186
effector cells, autonomic 254 (Tab. 7.1), 262–263, 268–269
Adrenaline, see adrenal medulla, see catecholamines, circulating
vasodilation in skeletal muscle 167
sympathetic premotor neurons (C1 neurons) 318, 321 (Fig. 8.16), 333–334, 388 (Fig. 10.3), 389–391, 453–454
Adrenal medulla 19, 143–148
Cannon’s view of functioning 464–465
inflammation and 146–147
memory consolidation and 147
nociceptor sensitization and 146–147
neural regulation of 143–144
Airways
parasympathetic innervation 159–161
sympathetic innervation 141–142
Allostasis 2, 472
allostatic load 6
concept, definition 469–470
Amygdala
autonomic responses during anger and fear, role of 495–498
lamina I (spinal) neurons, parabrachial nuclei and 72 (Fig. 2.12), 74
Analysis, experimental, of the autonomic nervous system
anesthesia, effects of 104
axon tracer methods 93, 294, 295 (Fig. 8.1)
closed-loop condition, studies in vivo 96, 105
identification of neurons, neurophysiology 99–101
immediate early gene c-fos (activity marker) 94, 188–190, 452
intracellular labeling 94, 452
microneurography, human 102–103, 103 (Fig. 3.6)
neurochemistry 30 (Tab. 1.3), 94, 176 (Tab. 5.1)
(see also neurochemical coding) 31 (Tab. 1.4)
neurophysiology, animals in vivo 96–101
reflexes, functional markers 95–96, 290
suicide killing of neurons, specific, by a toxin 296, 452
transneuronsal labeling, neurotropic virus 294–296
working-heart-brain-stem (WHBS) preparation 93–94
Area postrema (AP)
gastrointestinal tract and 440–441, 446–449
integration of endocrine signals by 446–449, 447 (Fig. 10.27)
neurohemal (circumventricular) organ 312
Arteries/arterioles, neural signal transmission to
adenosine triphosphate, transmitter 268–269
cotransmission 269
hormones, effect on 274
mesenteric artery 269
myogenic activity 275
neuroeffector transmission, mechanism 267–270
nitric oxide (NO) 275–276
peptidergic afferents, effect on (see axon reflex, neurogenic inflammation) 275
tail artery, rat 269–270
Autonomic ganglia
convergence, divergence in 214–216
definition 14, 15
parasympathetic 21–22 (Tab. 1.1), 23 (Fig. 1.4), 23–28, 238–240
sympathetic 16–18, 21–22 (Tab. 1.1), 230–238
Autonomic motor cortex (see cingulate cortex, anterior)
Autonomic neural unit 223–225
Autonomic regulation, integrative
behavior, brain and 2–5, 507–508
cortical control of 5, 508–510, 4 (Fig. 2)
endocrine regulation and 2
failure of 5–6
long-term 1
future research questions 510–514
range of 7
short-term 1
somatomotor system and 1
Autonomic and respiratory generator, integration 436–440
(see also cardiovascular and respiratory regulation, coupling)
Axon reflex 83, 275
B-afferent neurons (small dark neurons)
autonomic nervous system and 82–83
Bard, Philip (1898–1977)
diencephalic cats, sham-rage behavior 462, 517
mesencephalic, pontine cats 518
Baroreceptors, arterial
blood pressure control 399–400
functional types 399
nucleus tractus solitarii, projection to 312 (Fig. 8.11), 313, 400
Baroreceptor pathways to cardiovascular neurons 401 (Fig. 10.7), 403–407
caudal ventrolateral medulla, GABAergic interneurons 403–406, 408
inhibition in spinal cord (alternative pathways) 406–407
modulation of 407–408, 409 (Fig. 10.11)
rostral ventrolateral medulla, GABAergic inhibition 403–406
Baroreceptor reflexes 398–409
cutaneous vasoconstrictor neurons 120
cardiomotor neurons, parasympathetic 401 (Fig. 10.7), 402
detection of 398
functions of 399–400
muscle vasoconstrictor neurons 118
reflex pathways 400, 401 (Fig. 10.7)
resetting of and nucleus tractus solitarii 407–408
visceral vasoconstrictor neurons (see muscle vasoconstrictor neurons)
Bayliss, W. M. (1880–1924)
axon reflex 83
“The law of the intestine” (peristalsis) 183–184
Behavioral state and autonomic systems 4 (Fig. 2), 5
Behavioral patterns, autonomic responses in 473 (Tab. 11.1)
conditioned emotional responses (CER) 486–490
concept, general aspects, cortical command 470–472, 471 (Fig. 11.1)
defense reactions 480–486
diving response 475–476
freezing reaction 491
skeletal muscle effort 477–480
syncope, neurally mediated 490–491
tonic immobility 490
vigilance reaction 491
Bernard, Claude (1813–1878)
cardiovascular center, medulla oblongata 379
internal milieu 2, 460, 469
BDNF (brain-derived neurotrophic factor)
sympathetic preganglionic neurons 216
Blood vessels, integration of signals 273–276, 274 (Fig. 7.9)
“Brain of the gut”,see enteric nervous system 179
Brown adipose tissue
lipomotor neurons (sympathetic) 142, 417
Bursting activity in sympathetic neurons 396–398
network oscillator hypothesis 396, 397
respiratory rhythmicity 396–397
Cajal, Ramón y (1852–1934)
interstitial cells of Cajal 188–190
Calcitonin gene-related peptide (CGRP)
blood vessels, axon reflex 83, 253
enteric nervous system 176 (Tab. 5.1)
sympathetic neurons 29–31, 30 (Tab. 1.3), 31 (Tab. 1.4)
Cannon, Walter Bradford (1871–1945) 460–465
generalizing concept of the autonomic nervous system, consequences of 467–469
homeostasis 2
sympathico-adrenal system, concept of 145, 460–465
The Wisdom of the Body 8, 463–465
Cardiac-somatic hypothesis 474
Cardiovascular center, medulla oblongata
discovery of 379–381
Cardiovascular and respiratory regulation, coupling 426–428
common cardiorespiratory network, concept 437–439, 438 (Fig. 10.23)
common central oscillator model 436–437
irradiation model 436
respiratory sinus arrhythmia 428
Traube–Hering waves 426–428
Catecholamines, circulating (adrenaline, noradrenaline)
concentration 144
functions 144–145, 148 (Fig. 4.18)
Caudal pressure area (CPA)
location 385 (Fig. 10.2), 383–386
Caudal ventrolateral medulla (CVLM)
baroreceptor pathways 403–406
location 385 (Fig. 10.2), 383
Chemoreceptors, arterial
nucleus tractus solitarii, projection to 312 (Fig. 8.11), 410
Chemoreceptor reflexes, arterial
cutaneous vasoconstrictor neurons, in 456–457
reflex pathways 412 (Fig. 10.13)
sympathetic vasoconstrictor neurons, in 410–414
Cholecystokinin (CCK)
enteric hormone cells 172
enteric nervous system and defense 198 (Fig. 5.13), 200
Choline acetyltranferase (ChAT) 15
Cingulate cortex 74, 78
anterior cingulate cortex (ACC) 75, 76 (Fig. 2.13), 78
midcingulate cortex (MCC) 75, 76 (Fig. 2.13), 78
Common cardiorespiratory network, concept 437–439, 438 (Fig. 10.23)
Conditioned emotional responses (CER) 486–490
cardiovascular responses during 473 (Tab. 11.1), 487 (Fig. 11.8), 487–488
exercise, cardiovascular responses during, comparison with CER 489–490
generation of, technique 517–518
hypothalamus, integration of cardiovascular responses in CER 488–489
Conditioned fear response, rat
amygdala, role in 495–498, 497 (Fig. 11.12)
Confrontational defense, see defense reactions
Convergence in autonomic ganglia 214–216
segmental origin of sympathetic preganglionic neurons 216–217
Cortical control of autonomic nervous system
conditioned emotional response 486–490
concept 4, 5, 471 (Fig. 11.1), 508–510 (Fig. 2)
defense reaction 484–486
diving response/reflex 475–476
muscle exercise 477–480
sensations and 471 (Fig. 11.1), 471–472
Corticotropin-releasing hormone (CRH)
area postrema and gastrointestinal functions 448
sympathetic premotor neurons, in 321 (Fig. 8.16)
Craniosacral system 14, 15
see parasympathetic system
Cutaneous vasoconstrictor (CVC) neurons
chemoreceptor reflexes in 413–414
emotional stimuli, reaction to 122, 165
functional characteristics, animal 108 (Tab. 4.1), 113–117
functional characteristics, human 119–123, 120 (Tab. 4.2)
Lovén reflex 165
non-nicotinic transmission (ganglia) 243–244, 246 (Fig. 6.15)
nociceptive reflex, animal 115
nociceptive reflex, human 121
proportion of preganglionic neurons 116, 152 (Tab. 4.5)
reflex pattern 114 (Fig. 4.4), 115–116
respiratory rhythmicity in activity 116, 429–431, 432 (Fig. 10.21), 435–436
spontaneous activity, animal 115, 231 (Tab. 6.2)
spontaneous activity, human 117
functional types of 116
Cutaneous vasoconstrictor pathway, central
caudal raphe nuclei 415–417, 419 (Fig. 10.16)
rostral ventrolateral medulla 416–417, 419 (Fig. 10.16)
Cytokines
area postrema, tumor necrosis factor α & gastrointestinal functions 448–449
defense of the gastrointestinal tract 197, 198 (Fig. 5.13)
vagal afferents and 50
Deep dorsal horn projection neurons, spinal cord 70–71
ascending pathways 70 (Fig. 2.11)
functional classification 68 (Fig. 2.10), 70–71
supraspinal projection sites 71, 74
Defense, of the gastrointestinal tract 198 (Fig. 5.13)
cytokines, role of 197
enteric nervous system and 196–200
gut-associated lymphoid tissue (GALT) 196–197
mast cells and 198 (Fig. 5.13), 199
visceral afferents (spinal, vagal) 197, 199
Defense reactions, organized in the periaqueductal grey (PAG) 480–486
afferent inputs from body tissues and 483–484
autonomic responses in 473 (Tab. 11.1), 481
cardiovascular centers in the medulla oblongata and 482–483, 484 (Fig. 11.6)
hypothalamus, prefrontal cortex and 483–484
muscle vasodilation and 132–135
sensory adjustments in 481
types of 480–481, 482 (Fig. 11.5)
Defensive (agonistic) behavior
hypothalamus and 500, 506 (Tab. 11.2)
Divergence in autonomic ganglia 214–216
Diving response, cortically induced cardiovascular responses 473 (Tab. 11.1), 475–476
Domain theory (sympathetic ganglia) 215, 218
Dorsal motor nucleus of the vagus (DMNX)
enteric nervous system 180, 200–201, 201 (Fig. 5.14)
gastrointestinal tract, representation of 308–310, 311 (Fig. 8.10)
heart 308, 311 (Fig. 8.10)
intestino-intestinal reflex circuits 441–442
numbers of neurons, rat 329
preganglionic neurons to the gastrointestinal tract, functions 201, 201 (Fig. 5.14), 441
viscerotopic organization 308–310, 311 (Fig. 8.10)
Dorsal vagal complex (DVC) 313
forebrain, control of DVC by, concept 444, 446 (Fig. 10.26)
integration of endocrine signals 446–449, 447 (Fig. 10.27)
integration in the DVC, concept 443–444, 445 (Fig. 10.25)
intestino-intestinal reflex circuits 441–442
Dynorphin (DYN)
sympathetic neurons 29–31, 30 (Tab. 1.3), 31 (Tab. 1.4)
Dysreflexia, autonomic, after spinal cord transection 340–342
mechanisms of, in spinal cord 340–341
mechanisms of, in periphery 342
Edinger–Westphal nucleus 162, 310
Effector cells of the autonomic nervous system (see also neuroeffector transmission)
cellular response to nerve stimulation 255–256
endocrine cells (enteric nervous system) 174
enteric nervous system 171
functional syncytium 256
intracellular pathways 255–256, 266–268, 272–273
junctional/extrajunctional receptors see neuroeffector transmission
neuroeffector junctions 257–259
parasympathetic system 24, 25–27 (Tab. 1.2)
sympathetic system 19, 25–27 (Tab. 1.1)
Emission, ejaculation 360–361
Emotions, basic
autonomic responses, patterns of 492–494
central representation of emotions and autonomic responses 494–498
cingulated cortex and 495
types of 492, 493 (Fig. 11.10)
Enkephalin (ENK)
sympathetic neurons, in 31 (Tab. 1.4)
sympathetic premotor neurons, in 321 (Fig. 8.16)
Enteric nervous system 169–205
anatomy 169–171, 170 (Fig. 5.1)
concept of functioning 178–181, 179 (Fig. 5.3)
defense, gastrointestinal tract 196–200, 198 (Fig. 5.13)
definition 15
effector cells 171
interneurons 174–177, 176 (Tab. 5.1)
intrinsic primary afferent neurons (IPANs) 171–172, 176 (Tab. 5.1)
motility patterns, gastrointestinal tract 181–188
motor neurons 173–174, 176 (Tab. 5.1)
neurochemical coding 176 (Tab. 5.1), 177
parasympathetic control 200–203, 201 (Fig. 5.14)
secretion, transmural transport 194–196
sympathetic control 200–203, 203 (Fig. 5.15)
transmitters 176 (Tab. 5.1)
types of neurons 171–177, 172 (Fig. 5.2)
Erection
mechanisms 374
spinal reflex pathway 358–360
transmitters 374
Exteroception 36–37, 75, 76 (Fig. 2.13)
Extraspinal (peripheral) reflex pathways
gastrointestinal tract (prevertebral ganglia) 234–236
heart (parasympathetic ganglia) 231–234, 239 (Fig. 6.12)
heart (stellate ganglion) 235
visceral spinal afferents 237–238
Final autonomic (motor) pathway
concept 88–89
final common motor pathway and 89 (Fig. 3.1)
spinal autonomic circuits, and 163 (Fig. 4.23), 367–369
Final common motor pathway 88
Flight, see defense reactions
Freezing reaction
autonomic responses in 473 (Tab. 11.1), 491
Functions of the autonomic nervous system
hierarchical organization (levels of integration) 90–92, 91 (Tab. 3.1)
organization of central circuits, concept 92–93
GABA (γ-aminobutyric acid), inhibitory transmitter
sympathetic premotor neurons 333–334
interneurons, autonomic, in spinal cord 333–334, 391, 406–407
Rostral ventrolateral medulla baroreceptors reflexes 403–406
Galanin (GAL)
sympathetic neurons 29–31, 30 (Tab. 1.3)
Ganglia, autonomic
definition 213
postganglionic neurons, morphology 213–214
convergence, divergence of preganglionic 214–216
Ganglia, parasympathetic 17, 21–22 (Tab. 1.1), 238–240
cranial ganglia 24–28 (Tab. 1.4), 344 (Tab. 9.1)
heart 239
pelvic ganglia 239–240
Ganglia, paravertebral sympathetic 230–234
anatomy 16–18, 21–22 (Tab. 1.1)
non-nicotinic transmission 240–247
relay function 225, 232 (Fig. 6.10)
Ganglia, prevertebral sympathetic 234–238
anatomy 16, 18, 21–22 (Tab. 1.1)
integration, summation 232 (Fig. 6.10), 236–237
peripheral (extraspinal) reflexes 234–236
substance P in afferent collaterals to 43–44, 237–238
Gastrointestinal tract (see also enteric nervous system)
afferent feedback to the brain and 179–180
defense of 196–200, 198 (Fig. 5.13)
enteric nervous system and, concept 178–181, 179 (Fig. 5.3)
neurogenic inflammation, mucosa 55
parasympathetic neurons to, functional types 201, 201 (Fig. 5.14), 441
sympathetic neurons to, functional types 202–203, 203 (Fig. 5.15)
vagal afferents and 46
Glucagon-like peptide (GLP-1)
area postrema and gastrointestinal functions 448
Glutamate, transmitter
baroreceptors reflex pathways 401 (Fig. 10.7)
chemoreceptor reflex pathways 412 (Fig. 10.13)
sympathetic premotor neurons 333–334, 389–391
vagal afferents, to nucleus tractus solitarii 442
Glycine, inhibitory transmitter
interneurons, autonomic, spinal cord 333–334
baroreceptors reflex pathway, spinal cord 381
Grey ramus 17–18
Gut-associated lymphoid tissue (GALT)
enteric nervous system 171, 196–197
vagal afferents and 49
Hagbarth, Karl-Erik (1926–2005)
microneurography 102, 426
Heart
extraspinal reflex pathway to 231–234, 235, 239, 239 (Fig. 6.12)
neuroeffector transmission, parasympathetic 264–267
neuroeffector transmission, sympathetic 267
parasympathetic cardiomotor neurons 158
sympathetic cardiomotor neurons 141
Hess, Walter Rudolf (1881–1973)
ergotropic, trophotropic functions 466–467
organization of the autonomic nervous system, dichotomous 465–467
generalizing concept of the autonomic nervous system, consequences 467–469
Heymans, Corneille (1892–1968)
baroreceptor reflexes 398
Hierarchical organization
afferent feedback and 35
autonomic motor system 4
autonomic functions 90–92, 91 (Tab. 3.1), 92–93, 291
Hindgut, parasympathetic (sacral) control 156–157
Homeostasis 2
Cannon’s concept 460–465
concept, definition 469–470
5-Hydroxytryptamine (5-HT), transmitter
enteric nervous system 176 (Tab. 5.1), 177
enterochromaffin cells 171, 195, 195 (Fig. 5.12)
sympathetic premotor neurons 321 (Fig. 8.16), 333–334
Hyperhydrosis, patients
and vibration sudomotor reflex 166
Hypothalamus, integrative functions 498–507, 506 (Tab. 11.2)
anatomy, functional of 499 (Fig. 11.13), 499–503
behavior control column in 500–501, 502 (Fig. 11.14)
circadian timing network in 502 (Fig. 11.14), 503
functional model of, concept 503–507, 504 (Fig. 11.15)
hypothalamic visceral pattern generator (HVPG) 501–503, 502 (Fig. 11.14)
neuroendocrine motor zone in 500, 502 (Fig. 11.14)
Hypothalamo-sympathetic system,
immune system and 150
Immune tissue
sympathetic control of 148–151
Ingestive behavior
hypothalamus and 501, 506 (Tab. 11.2)
Inspiratory neurons (sympathetic) 143, 152 (Tab. 4.5)
respiratory rhythmicity in activity of 431, 432 (Fig. 10.21)
Insular cortex
interoception 76 (Fig. 2.13)
thalamus, projection to 76 (Fig. 2.13), 77, 79 (Fig. 2.14)
Interneurons, enteric
peristalsis, role of 187 (Fig. 5.8)
transmitter of 176 (Tab. 5.1), 177
functional types of 176 (Tab. 5.1)
Interneurons, spinal autonomic 305–306
criteria for existence 334–336
micturition, continence 350–352, 354, 355
propriospinal, thoracolumbar 306, 322–323 (Tab. 8.2), 335
sacral spinal cord 308, 326 (Tab. 8.3), 335, 336
segmental, thoracolumbar 305–306, 322–323 (Tab. 8.2), 335–336
transmitters 333–334
Interneurons, spinal somatomotor
control of movement, role of 363–366
Interoception 75
cortical representation, insula 76 (Fig. 2.13)
exteroception and, concept 36–37
thalamic representation 76 (Fig. 2.13)
Interstitial cells of Cajal (ICC) 171
criteria for ICC 205–206
generation of pacemaker potentials by, mechanisms 206–207
networks of ICC 189, 189 (Fig. 5.9)
neuroeffector transmission and 173, 191–192
pacemaker (gastrointestinal tract) and 190
presence in organs other than the gastrointestinal tract 205–206
slow waves of the gastrointestinal tract, role in 188–190
Intestinofugal neurons (enteric nervous system) 202–203, 203 (Fig. 5.15), 214, 235, 239
Intestino-intestinal reflexes (see also extraspinal [peripheral] reflex pathways)
spinal 234–236, 238
vagal (dorsal vagal complex, DVC) 441–442, 446 (Fig. 10.26)
Intrinsic primary afferent neurons (IPANs), see enteric nervous system
James, William (1842–1910)
James–Lange theory of emotions 461–462, 491–492
Kidney
sympathetic innervation 142
Lamina I projection neurons, spinal cord 67–70
ascending pathways 70 (Fig. 2.11)
functional classification 67, 68 (Fig. 2.10)
supraspinal projection sites 69
thalamic nuclei and 75–77, 76 (Fig. 2.13)
Langley, John Newport (1852–1925)
enteric nervous system, definition 13, 168
sympathetic, parasympathetic, definition 13–14, 15
visceral afferent neurons, definition 40–41, 42–45
Limbic motor cortex, see anterior cingulate cortex
Limbic sensory cortex, see insula
Lovén, Otto Christian (1836–1904) 115
Lovén reflex 165
Lower brain stem
baroreceptor reflexes 398–409
cardiovascular–respiratory coupling 420–440
chemoreceptor reflexes 410–414
functional anatomy of 382–388, 385 (Fig. 10.2), 388 (Fig. 10.3)
gastrointestinal reflexes 441–444
general functions 377–378
Ludwig, Carl Friedrich (1916–1895) 115
baroreceptors and cardiovascular control 398
cardiovascular center 379–380
Lundberg, Anders (born 1923)
motor control, role of spinal circuits 363
Micturition center, pontine 353, 353 (Fig. 9.9)
Micturition, continence, reflexes 352–354
micturition reflex 352
sacral visceral C- and Aδ-afferents, role in 373–374
spinal reflexes 351 (Fig. 9.8), 354, 355–357
supraspinal control 353, 353 (Fig. 9.9), 355–357, 373
Migrating myoelectric complex (MMC) 181, 193–194
Motility-regulating (MR) neurons to pelvic organs
functional characteristics 137–138, 140, 152 (Tab. 4.5)
reflex pattern 138 (Fig. 4.14)
respiratory rhythmicity in activity 431, 432 (Fig. 10.21)
spontaneous activity 137, 231 (Tab. 6.2)
Motility patterns, gastrointestinal tract
fed pattern of motility (see peristalsis) 181
interdigestive motility pattern 181 (see migrating myoelectric complex [MMC])
interstitial cells of Cajal and 192
rhythmoneuromuscular apparatus 194
slow waves 181–183, 182 (Fig. 5.4), 183 (Fig. 5.5)
Muscle effort, cortically induced cardiovascular responses 473 (Tab. 11.1), 477–480
Muscarinic (cholinergic) transmission in autonomic ganglia, see non-nicotinic transmission
Muscle vasoconstrictor (MVC) neurons
functional characteristics, animal 107–112, 108 (Tab. 4.1)
functional characteristics, human 117–119, 120 (Tab. 4.2)
non-nicotinic transmission (ganglia) 243–244, 246 (Fig. 6.15)
proportion of preganglionic neurons 112, 152 (Tab. 4.5)
reflex pattern 109 (Fig. 4.1), 110–111
respiratory rhythmicity 429, 432 (Fig. 10.21), 433–435
spontaneous activity, animal 109, 231 (Tab. 6.2)
spontaneous activity, human 117
Myenteric plexus (Auerbach’s plexus) (enteric nervous system) 170 (Fig. 5.1)
NANC, non-adrenergic non-cholinergic transmission 252–253
Nerve growth factor (NGF)
sympathetic postganglionic neurons 216
sympathetic postganglionic fibers, hyperalgesia and 274 (Fig. 7.9), 282–283
Neurochemical coding
concept of 32–33
enteric nervous system 176 (Tab. 5.1), 177
parasympathetic neurons 31–32
sympathetic neurons 29–31, 30 (Tab. 1.3), 31 (Tab. 1.4)
Neuroeffector junctions
functional characteristics 258–259
morphology 257–259, 258 (Tab. 7.2)
Neuroeffector transmission to autonomic target cells
arteries, arterioles 267–270
cellular events 255–256
concept, principles 255–263
effector cells (see specific effector cells)
electrophysiology 260–263
excitatory junction potential 261–262
heart 264–267
ileum 271–273
interstitial cells of Cajal and 273
intracellular pathways 255–256, 266–268, 272–273
morphology 257–259, 258 (Tab. 7.2)
quantal release of transmitter 260–262
receptors, postjunctional, extrajunctional 255, 266, 267
ileum, smooth muscle 271–273
veins 270–271
Neurogenic inflammation (see axon reflex) 83
sympathetic postganglionic fibers, role of 277–281
Neurokinins
axon reflex, role of 83
Neuropeptides in autonomic neurons see neurochemical coding
Neuropeptide Y (NPY)
arteries, modulation by 270
sympathetic neurons 29–31, 30 (Tab. 1.3), 31 (Tab. 1.4), 253
parasympathetic neurons 31–32
Neurturin
parasympathetic postganglionic neurons 216
Nitric oxide (NO)
blood vessels 275–276
enteric motor neurons 173, 176 (Tab. 5.1), 177
erection 374
peristalsis 186
parasympathetic neurons 31–32
urinary tract 352, 374
Nociceptor sensitization
nerve growth factor 282–283
prostaglandin 281–282
sympathetic postganglionic fibers 281–283
Non-nicotinic (muscarinic, non-cholinergic) transmission in autonomic ganglia 240–247
LHRH-like peptide (bullfrog) 240
pelvic ganglia (to vasodilator neurons), response to preganglionic electrical stimulation 247–248
reflexes in vasoconstrictor neurons 244–246
unmyelinated preganglionic axons 241
Noradrenaline
adrenal medulla and 144, 158
adrenoceptors 25–27 (Tab. 1.2)
sympathetic premotor neurons 321 (Fig. 8.16), 333–334
transmitter, sympathetic 252–254
Nucleus ambiguus 308, 309 (Tab. 8.1)
Nucleus tractus solitarii (NTS) 311–317
baroreceptors, projection to 312 (Fig. 8.11), 400
chemoreceptors, projection to 312 (Fig. 8.11), 410
connections with brain centers 315, 316 (Fig. 8.13)
division of NTS nuclei 312 (Fig. 8.11)
functions of, concept 315–316, 317 (Fig. 8.14)
gastrointestinal tract afferents, projections to 313, 314 (Fig. 8.12)
parabrachial nuclei and 72 (Fig. 2.12), 79 (Fig. 2.14)
pulse rhythmicity of activity of NTS neurons 455
synaptic transmission to the DMNX 442
thalamus, somatosensory and 78, 79 (Fig. 2.14)
viscerotopic organization of 312 (Fig. 8.11), 312–314
PACAP
enteric motor neurons 173, 176 (Tab. 5.1)
Parabrachial nuclei
hypothalamus and 72 (Fig. 2.12)
lamina I neurons, projection to 72 (Fig. 2.12), 73
nucleus tractus solitarii neurons, projection to 72 (Fig. 2.12), 73
Parasympathetic ganglia (see ganglia, parasympathetic)
Parasympathetic preganglionic neurons, cranial
airways 308
blood vessels (cranial) 310
eye 310
gastrointestinal tract 310
glands (head) 310
heart 308
location 24–28, 308–310 (Fig. 1.4), 309 (Tab. 8.1), 326 (Tab. 8.3)
Parasympathetic preganglionic neurons, sacral morphology 306–307
Parasympathetic premotor neurons
abdominal organs and 324 (Fig. 8.17), 326 (Tab. 8.3)
location 319, 320–325, 324 (Fig. 8.17), 326 (Tab. 8.3)
pelvic organs and 324 (Fig. 8.17), 326 (Tab. 8.3)
Parasympathetic systems innervating
airways 159–161
eye 161–162
functional types 153–162, 155 (Tab. 4.6)
gastrointestinal tract 161
heart 158
pelvic organs 154–158
salivary glands 161
Parasympathetic system, peripheral
anatomy, macroscopical 20–24
definition 14, 15
target organs, reactions to stimulation of 24–28, 25–27 (Tab. 1.2)
Paravertebral ganglia (sympathetic) 230–234 see ganglia, paravertebral
Pavlov, Ivan (1849–1936)
conditioned autonomic reflex 472–474
Pelvic ganglia 19, 239–240, 250
Pelvic organs
parasympathetic functional pathways 154–158
sympathetic functional pathways 136–141
Peptide YY
area postrema and gastrointestinal functions 448
Peptidergic transmission in autonomic ganglia, see non-nicotinic transmission
Periaqueductal grey (PAG)
afferent input from body to 483–484
defense reactions, organized in 480–481, 482 (Fig. 11.5), 517
hypothalamic and cortical control of 484–486
lamina I neurons (spinal), projection to 72 (Fig. 2.12)
nucleus tractus solitarii (NTS), projection to 72 (Fig. 2.12)
projection to cardiovascular centers in medulla oblongata 482–483, 484 (Fig. 11.6)
Peristalsis, gastrointestinal tract 183–188 (see also slow waves)
colon, mechanism 186–188, 187 (Fig. 5.8)
intrinsic primary afferent neurons (IPANs) 184–186
motility patterns 181–183
small intestine, mechanism 186, 187 (Fig. 5.8)
Pilomotor neurons, cat 128–129
Pineal gland, sympathetic innervation 143
Playing-dead response, see tonic immobility
Ponto-medullary respiratory network 386, 387
Postganglionic neurons
morphology 213–214
recording in vivo intracellular 220–221, 221 (Fig. 6.5)
strong, weak synaptic input 217–223
sympathetic 16–19, 20, 21–22 (Tab. 1.1)
parasympathetic 21–22 (Tab. 1.1), 23–24
Postganglionic neurons, sympathetic 16–19
electrophysiological properties 225–230, 228 (Tab. 6.1)
LAH (long-afterhypolarizing) neurons 229, 230
phasic neurons 226–227, 229
neurogenic inflammation and 277–281
nociceptor sensitization and 281–283
tonic neurons 227–229
Preganglionic neurons (see also parasympathetic or sympathetic preganglionic neurons)
parasympathetic, anatomy 20–23
parasympathetic, location 21–22 (Tab. 1.1)
sympathetic, anatomy 19–20
sympathetic, location 20, 21–22 (Tab. 1.1)
Premotor neurons, autonomic
definition 317–318
parasympathetic 319, 320–325, 324 (Fig. 8.17), 326 (Tab. 8.3)
patterns of, labeled from distinct targets 322–323 (Tab. 8.2), 325–327, 326 (Tab. 8.3)
sympathetic 318–320, 320 (Fig. 8.15), 322–323 (Tab. 8.2)
Prevertebral ganglia (sympathetic) see ganglia prevertebral
Purinoreceptor 263, 270
Quiescence, see defense reactions
Raphe nuclei
cutaneous vasoconstrictor system and 415–417
lipomotor neurons (brown adipose tissue) and 417–420
Reproductive behavior
hypothalamus and 501, 506 (Tab. 11.2)
Reproductive organs, reflexes connected with
central mechanisms 358
emission, ejaculation 359–360
erection 358–360
female 357, 361
parasympathetic (sacral) control 157–158
sacral (parasympathetic) vs. thoracolumbar 357, 359–360
Research questions, future, integrative actions of the autonomic nervous system 510–514
Respiration
eupnea (normal respiration) 420
pacemaker in preBötzinger complex and 386, 396
respiratory phases 420, 425 (Fig. 10.18)
Respiratory network, ponto-medullary 386, 420–422
cardiovascular network, integration with 423–424, 424 (Fig. 10.17)
classification of respiratory neurons 422, 457
respiratory rhythm, theories of generation 421–422
Respiratory neurons, ventrolateral medulla
cardiovascular neurons and 387
types of 386–387, 422, 457
location 385 (Fig. 10.2), 386–387
Respiratory rhythmicity in activity of autonomic neurons
autonomic effector organs, respiratory oscillations 423
cutaneous vasoconstrictor (CVC) neurons 116
functionally identified autonomic neurons, animals 428–433, 432 (Fig. 10.21)
functionally identified autonomic neurons, humans 426, 433–436, 458
muscle vasoconstrictor (MVC) neurons 118
species differences 433
sudomotor (SM) neurons 127
sympathetic nerves 423–426
Respiratory system, airways
vagal afferents and 46
neurogenic inflammation, mucosa 55
Rostral ventrolateral medulla (RVLM)
baroreceptor pathways 403–406
cardiovascular premotor nucleus 389–393, 391 (Fig. 10.5)
criteria as vasomotor nucleus 389
location 385 (Fig. 10.2), 385
numbers of bulbospinal neurons 454
sympathetic premotor neurons 318
Rhythmoneuromuscular apparatus, enteric nervous system
gastrointestinal motility patterns 193 (Fig. 5.11), 194
Salivary glands
parasympathetic innervation 161
sympathetic innervation 142
Salivary nuclei, inferior, superior 309 (Tab. 8.1), 310
Secretion, transmural transport (gastrointestinal tract)
reflex pathways, enteric nervous system 194–196, 195 (Fig. 5.12)
Secretomotor neurons innervating
airways 159–161
enteric nervous system 172 (Fig. 5.2), 173–174
salivary glands 161
Sensorimotor programs
autonomic nervous system 3–5
behavior and 4
cortical control of 508–510
enteric nervous system 179–180
hierarchical organization of 4 (Fig. 2)
spinal autonomic motor programs 367
Sensory receptors, skin and sympathetic innervation 131–132
Sensory receptors, skeletal muscle and sympathetic innervation 135
Sham-rage behavior, see defense behavior
Sherrington, Sir Charles Scott (1857–1952)
common sensations, of the body 36
control of movement, role of spinal motor circuits 362–363
final common motor path 88
interoception, exteroception 36–37
Silent (mechanoinsensitive) visceral afferents 59–60
Skin potential
and sudomotor neurons 123–125
components of 165–166
Slow waves, gastrointestinal tract (see also peristalsis)
interstitial cells of Cajal (ICC) and 188–190
mechanisms 181–182, 182 (Fig. 5.4), 183 (Fig. 5.5)
Somatostatin, transmitter
enteric interneurons 177
sympathetic neurons 29–31, 30 (Tab. 1.3)
Sphincter-detrusor dyssynergia 354
Spinal autonomic reflex pathway
concept 332–333, 333 (Fig. 9.1)
coordination of spinal autonomic motor circuits 369–370
coordination of spinal autonomic and spinal somatomotor circuits 370–371
integration of spinal and supraspinal autonomic reflex circuits, concept 367–369 (Fig. 9.15)
Spinal cord
deep dorsal horn projection neurons 68 (Fig. 2.10)
dorsal horn neurons, classification 84
integrative autonomic organ, concept 366–370
integration of spinal and supraspinal circuits in autonomic control, concept 366–367, 369 (Fig. 9.15)
interneurons 66–67 (see interneurons, spinal autonomic)
lamina I projection neurons 67–70, 68 (Fig. 2.10), 69
postsynaptic dorsal column tract 71–73
regulation of somatomotor system, role of, concept 362–366
viscero-somatic convergent neurons 67, 69
Spinal shock of sympathetic systems, after spinal cord transection 339–340, 372
motility-regulating (MR) neurons 139–140
recovery of spontaneous activity in autonomic neurons 339–340
recovery of spinal autonomic reflexes 339–340, 343
vasoconstrictor systems 139–140
Spinal reflexes, parasympathetic (sacral) 349–361
colon 354
colon–bladder interaction 355–357
reproductive organs 357–361
urinary bladder 350–354
Spinal reflexes, sympathetic (thoracolumbar)
cardio-cardial reflexes 348
chronically after spinal cord transection 336–349
cutaneous vasoconstrictor neurons 343 (Fig. 9.4), 344 (Tab. 9.1), 345
intestino-intestinal reflexes 348–349
motility-regulating neurons 337–338, 345
recovery after spinal cord transection, cat 339–340
recovery after spinal cord transection, human 343
reno-renal reflexes 347
reflexes to physiological stimulation 342–349, 343 (Fig. 9.4), 344 (Tab. 9.1)
reflexes to visceral stimuli 339–340, 347 (Fig. 9.6), 348 (Fig. 9.7)
segmental, suprasegmental, to electrical stimulation of afferents 337–339
sympathetic pathways, in 139–140
visceral vasoconstrictor neurons 337
viscero-cutaneous reflexes 349
Spleen and immune system, sympathetic control 149–150
Spontaneous activity in autonomic neurons
caudal pressure area (CPA) and 394
postganglionic neurons, sympathetic 231 (Tab. 6.2)
postganglionic neurons, sympathetic after decentralization 250
mechanism and origin 396–398
preganglionic neurons, sympathetic 231 (Tab. 6.2)
rostral ventrolateral medulla, role in 393–394
rhythmic (bursting) changes of activity in “sympathetic nerves” 379, 396–398
sympathetic premotor (C1) neurons 381
sympathetic vasomotor “tone” 381, 396
Starling, Ernest Henry (1866–1927) see Bayliss, William M.
Stellate ganglion 17
Strong synapses in autonomic ganglia 217–223
calcium channels 218, 220
concept of functioning 222–223, 232 (Fig. 6.10)
relay function 225
Submucosal plexus (Meissner’s plexus) (enteric nervous system) 170 (Fig. 5.1)
Subretrofacial nucleus, cat, s. rostral ventrolateral medulla 391, 406–407
Substance P
axon reflex, role in 83, 253
sympathetic neurons 29–31, 30 (Tab. 1.3), 31 (Tab. 1.4)
sympathetic premotor neurons, in 321 (Fig. 8.16)
transmitter in prevertebral ganglia, see ganglia, prevertebral
Sudomotor (SM) neurons
cutaneous vasoconstrictor neurons and 127
electrodermal activity, human, role of 128
functional characteristics, animal 123–127
functional characteristics, human 127–128
reflex pattern in 126 (Fig. 4.11)
respiratory rhythmicity in activity of 127, 431, 432 (Fig. 10.21), 435–436
skin potential, cat, and 123–125
spontaneous activity in 231 (Tab. 6.2)
vibration reflex, cat, in 126, 127
Superior cervical ganglion 17
Supersensitivity, autonomic effector cells to denervation, decentralization 167
Sympathetic outflow to pelvic organs 136–141
Sympathetic preganglionic neurons
intermediate zone, spinal cord, subnuclei 297
location of 297–305
lumbar system, functional, topography 305 (Fig. 8.8), 305–306
morphology of 297–305, 299 (Fig. 8.3)
proportions of functional types of 151–153
segmental organization of 299–300, 322–323 (Tab. 8.2)
silent preganglionic neurons 152 (Tab. 4.5), 153
spontaneous activity of 231 (Tab. 6.2)
synchronization of activity of 230–232
viscerotopic organization of 300–304, 303 (Fig. 8.6), 304 (Fig. 8.7)
Sympathetic premotor neurons
caudal raphe nuclei 414–420
cutaneous vasoconstrictor premotor neurons 415–417
GABAergic transmission to 417
lipomotor premotor neurons (brown adipose tissue) 417–420
location of 318–320, 320 (Fig. 8.15), 322–323 (Tab. 8.2)
rostral ventrolateral medulla, location in and functional topography 383, 391–393, 392 (Fig. 10.6)
spontaneous activity in, origin 393–394
synaptic input to 391, 391 (Fig. 10.5)
transmitter, putative 318, 321 (Fig. 8.16), 333–334, 389–391
Sympathetic system, peripheral
anatomy, macroscopical 16–20
definition 14, 15
target organs, reactions to stimulation of 24–28, 25–27 (Tab. 1.2)
Sympathetic trunk (chain) 16
Sympathico-adrenal system 463, 467
Cannon’s concept of 145, 460–465
emergency function of the 464
Syncope, neurally mediated (see also tonic immobility)
cardiovascular responses in 490–491
Syncytium of effector cells
passive electrical behavior 256, 286
Tachykinins, see also substance P
axon reflex 83
enteric nervous system 176 (Tab. 5.1)
Thalamocortical system
body sensations, representations in 74–78, 76 (Fig. 2.13)
Thalamus, somatosensory
nuclei 76 (Fig. 2.13)
lamina I neurons, projection to 74
somatosensory cortex (SI, SII) 74–75
ventral posterior nuclei (VPL, VPM) 74, 76 (Fig. 2.13)
ventromedial nucleus, basal part (VMb) 74–78, 76 (Fig. 2.13), 78, 79 (Fig. 2.14)
ventromedial nucleus posterior (VMpo) 74–78, 76 (Fig. 2.13), 78, 79 (Fig. 2.14)
Thermoregulatory behavior
hypothalamus and 501, 506 (Tab. 11.2)
Thoracolumbar system 14, 15 see sympathetic system
Thyrotropin-releasing hormone (TRH)
area postrema and gastrointestinal functions 447–448
sympathetic premotor neurons, in 321 (Fig. 8.16)
Tonic immobility
autonomic responses in 473 (Tab. 11.1), 490
Transmitters
interneurons, spinal 334–336
postganglionic neurons 252–254, 254 (Tab. 7.1)
sympathetic premotor neurons 318, 319, 321 (Fig. 8.16), 333–334
Traube–Hering waves, mechanism 426–428
Trigeminal afferent neurons 39
Urethro-genital reflex 357 (see also emission, ejaculation)
Urinary tract, lower
parasympathetic (sacral) control of 157
Vagal afferents, see visceral afferent neurons, vagal
Vagus nerve
abdominal, branches 330
abdominal, numbers of fibers, rat 329
Vasoactive intestinal peptide (VIP)
enteric motor neurons 173, 176 (Tab. 5.1)
erection 374
peristalsis 186
parasympathetic neurons 31–32
secretomotor neurons 253, 254 (Tab. 7.1)
sympathetic neurons 29–31, 30 (Tab. 1.3), 31 (Tab. 1.4)
sympathetic premotor neurons 321 (Fig. 8.16)
Vasoconstrictor neurons (see under cutaneous, muscle, visceral vasoconstrictor neurons)
skeletal muscle 107–112, 117–119
skin 113–117, 119–123
viscera 112–113
Vasodilator neurons
blood vessels, cranial 309 (Tab. 8.1), 310
blood vessels, skeletal muscle, see Vasodilator neurons, skeletal muscle
blood vessels, skin, see Vasodilator neurons, skin
enteric nervous system 172 (Fig. 5.2), 173–174, 195 (Fig. 5.12)
eye 161–162
paracervical ganglia 247
reproductive organs, parasympathetic 157–158
reproductive organs, sympathetic 136
salivary glands 161
Vasodilator neurons, skeletal muscle
cholinergic 133
functional characteristics, cat 132–135
hypothalamic defense reaction and 132–135
in humans 135
Vasodilator neurons, skin
sympathetic, animals 129–130
sympathetic, humans 130–131
parasympathetic 131
Vasodilation, skin
sweating and 130–131
neural mechanisms of 130–131
peptidergic afferents and 130
role of vasoactive intestinal polypeptide 166
Vegetative nervous system 13
Veins, pulmonary artery
neuroeffector transmission 270–271
Ventrolateral medulla oblongata (VLM) 381–388
anatomy, functional 382–388, 385 (Fig. 10.2)
adrenergic (C1) neurons 387–388, 388 (Fig. 10.3)
cardiovascular and respiratory neurons 387
noradrenergic (A1) neurons 387–388
Vigilance reaction
autonomic responses in 473 (Tab. 11.1), 491
Visceral afferent neurons, general (see also visceral afferent neurons spinal, vagal)
definition 40–42
general functional characteristics 37–42, 38 (Fig. 2.1)
interface between viscera and brain 40–41, 42–45
receptive functions of 45–53
sensation, organ regulation, and model of encoding 63–65, 64 (Fig. 2.9)
specificity, function of visceral afferents, concept 62–63
Visceral afferent neurons, spinal 43 (Fig. 2.3)
afferent functions of 43
axon reflex and 83
efferent functions of 44
general characteristics 37–39, 40 (Fig. 2.2)
peripheral (extraspinal) reflexes 43–44, 237–238
projection to spinal cord 52–53
prevertebral (sympathetic) ganglia and 237–238
sacral visceral afferent neurons 53
sensations and 48 (Tab. 2.1)
silent (mechanoinsensitive) visceral afferents 59–60
substance P in 43–44, 83, 237–238
thoracolumbar visceral afferent neurons 53
trophic functions of 44
visceral pain and 56–60
Visceral afferent neurons, vagal
body protection and 49–52, 54–55
cardiovascular system 46
cortical representation 78, 79 (Fig. 2.14)
gastrointestinal tract 49–52, 440
general characteristics of 39, 40 (Fig. 2.2)
illness responses (sickness behavior) and 51 (Fig. 2.5)
nociception and pain 54–56
nucleus tractus solitarii, projection to 79 (Fig. 2.14)
receptive functions of 46–52
respiratory tract and 46
Visceral pain
cardiac pain and vagal afferents 55–56
spinal visceral afferents and 56–60
theory, specificity vs. intensity 62–63
vagal abdominal afferents and 54–55
vagal thoracic afferents and 55–56
visceral sensations, organ regulation and, concept 63–65, 64 (Fig. 2.9)
Visceral sensations
spinal visceral afferents and 48 (Tab. 2.1)
vagal visceral afferents and 48 (Tab. 2.1)
organ regulation and 60–61
specificity of visceral afferents and 62–63
Visceral sensory cortex, see insular cortex insular cortex
Visceral vasoconstrictor (VVC) neurons
functional characteristics, animal 112–113
proportion of preganglionic neurons 113, 152 (Tab. 4.5)
spontaneous activity, animal 231 (Tab. 6.2)
Volume conduction
prevertebral ganglia 237
Weak synapses in autonomic ganglia 217–223
calcium channels 218, 220
concept of functioning 222–223, 232 (Fig. 6.10)
White ramus 17
© Cambridge University Press